I want to simplify this symbolic expression, and then take the limit of it (this is not too hard on a paper) using Matlab
syms n x
sn = 8^n * n^2 * (sin(x))^(3*n)
simplify(sn^(1/n))
which results in
ans =
8*n^(2/n)*(sin(x)^(3*n))^(1/n)
This must be like 8 * n^(2/n) * (sin(x))^3
. However, if I use
x = sym('x', 'positive'); n = sym('n', 'positive');
sn = 8^n * n^2 * (sin(x))^(3*n)
simplify(sn^(1/n))
to obtain a similar answer and then take limit, I get:
limit(ans, n, inf)
ans =
8*limit(n^(2/n)*(sin(x)^(3*n))^(1/n), n == Inf)
instead of 8*sin(x)^3
.
If I simplify this on paper and then take limit, everything works:
limit(8*n^(2/n)*sin(x)^3, n, inf)
ans =
8*sin(x)^3
Is it possible to solve this using Matlab?