I have a data frame that looks like this:
ID rd_test_2011 rd_score_2011 mt_test_2011 mt_score_2011 rd_test_2012 rd_score_2012 mt_test_2012 mt_score_2012
1 A 80 XX 100 NA NA BB 45
2 XX 90 NA NA AA 80 XX 80
I want to write a script that would, for IDs that don't have NA's in the yy_test_20xx columns, create a new data frame with the subject taken from the column title, the test name, the test score and year taken from the column title. So, in this example ID 1 would have three entries. Expected output would look like this:
ID Subject Test Score Year
1 rd A 80 2011
1 mt XX 100 2012
1 mt BB 45 2012
2 rd XX 90 2011
2 rd AA 80 2012
2 mt XX 80 2012
I've tried both reshape and various forms of merged.stack which works in the sense that I get an output that is on the road to being right but I can't understand the inputs well enough to get there all the way:
library(splitstackshape)
merged.stack(x, id.vars='id', var.stubs=c("rd_test","mt_test"), sep="_")
I've had more success (gotten closer) with reshape:
y<- reshape(x, idvar="id", ids=1:nrow(x), times=grep("test", names(x), value=TRUE),
timevar="year", varying=list(grep("test", names(x), value=TRUE), grep("score",
names(x), value=TRUE)), direction="long", v.names=c("test", "score"),
new.row.names=NULL)