Currently I'm reading "The Algorithm Design Manual" by Skiena (well, beginning to read)
He asks a problem he calls the "Movie Scheduling Problem":
Problem: Movie Scheduling Problem
Input: A set I of n intervals on the line.
Output: What is the largest subset of mutually non-overlapping intervals which can be selected from I?
Example: (Each dashed line is a movie, you want to find a set with the highest quantity of movies)
----a---
-----b---- -----c--- ---d---
-----e--- -------f---
--g-- --h--
The algorithm I thought of to solve it was like this: I could throw out the "worst offender" (intersects with the most other movies) until there are no worst offenders (zero intersections). The only problem I see is that if there is a tie (say two different movies each intersect with 3 other movies) could it matter which one I throw out?
Basically I'm wondering how I go about turning the idea into "math" and how to prove it correct/incorrect.