As indicated in the title above, my question is simply whether or not a C++ cast does create a new object of the target class. Of course, I have used Google, MSDN, IBM and stackoverflow's search tool before asking this but I can't find an appropriate answer to my question.
Lets consider the following implementation of the diamond problem solved by using virtual inheritance:
#include <iostream>
#include <cstdlib>
struct A
{
int a;
A(): a(2) { }
};
struct B: virtual public A
{
int b;
B(): b(7) { }
};
struct C: virtual public A
{
int c;
C(): c(1) { }
};
struct END: virtual public B, virtual public C
{
int end;
END(): end(8) { }
};
int main()
{
END *end = new END();
A *a = dynamic_cast<A*>(end);
B *b = dynamic_cast<B*>(end);
C *c = dynamic_cast<C*>(end);
std::cout << "Values of a:\na->a: " << a->a << "\n\n";
std::cout << "Values of b:\nb->a: " << b->a << "\nb->b: " << b->b << "\n\n";
std::cout << "Values of c:\nc->a: " << c->a << "\nc->c: " << c->c << "\n\n";
std::cout << "Handle of end: " << end << "\n";
std::cout << "Handle of a: " << a << "\n";
std::cout << "Handle of b: " << b << "\n";
std::cout << "Handle of c: " << c << "\n\n";
system("PAUSE");
return 0;
}
As I understood, the actual structure of B and C, which normally consists of both an embedded instance of A and variables of B resp. C, is destroyed since the virtual A of B and C is merged to one embedded object in END to avoid ambiguities. Since (as I always thought) dynamic_cast usually only increases the address stored by a pointer by the offset of the embedded (cast's) target class there will be a problem due to the fact that the target (B or C) class is divided into several parts.
But if I run the example with MSVC++ 2011 Express everything will happen as expected (i.e. it will run, all *.a output 2), the pointers only slightly differ. Therefor, I suspect that the casts nevertheless only move the addresses of the source pointers by the internal offset of B's / C's instance.
But how? How does the resulting instance of B / C know the position of the shared A object. Since there is only one A object inside the END object but normally an A object in B and C, either B or C must not have an instance of A, but, indeed, both seem to have an instance of it.
Or does virtual
only delegate calls to A's members to a central A object without deleting the respective A objects of each base class which inherits virtual from A (i.e. does virtual
actually not destroy the internal structure of inherited and therefor embedded objects but only not using their virtualized (= shared) members)?
Or does virtual
create a new "offset map" (i.e. the map which tells the address offsets of all members relative to the pointer to a class instance, I dunno the actual term) for such casted objects to handle their "distributedness"?
I hope I have clarified everything, many thanks in advance
BlueBlobb
PS:
I'm sorry if there are some grammar mistakes, I'm only a beer loving Bavarian, not a native speaker :P
Edit:
If have added these lines to output the addresses of all int a's:
std::cout << "Handle of end.a: " << &end->a << "\n";
std::cout << "Handle of a.a: " << &a->a << "\n";
std::cout << "Handle of a.b: " << &b->a << "\n";
std::cout << "Handle of a.c: " << &c->a << "\n\n";
They are the same implying that there is indeed only one A object.