std::for_each( A.rbegin(), A.rend(), [](int i) { /*code*/ } );
is the simple solution.
I instead have written backwards
which takes a sequence, extracts the begin
and end
iterator from it using the free begin
and end
functions (with std::begin
and std::end
using
declarations nearby -- full ADL), creates reverse iterators around them, then returns a sequence with those two reverse iterators.
It is sort of neat, because you get this syntax:
for( int i : backwards(A) ) {
// code
}
which I find easier to read than std::for_each
or manual for
loops.
But I am a bit nuts.
Here is a minimal backwards
. A full on solution handles adl and a few corner cases better.
template<class It, class C>
struct range_for_t{
It b,e;
C c; // for lifetime
It begin()const{return b;}
It end()const{return e;}
}
template<class It, class C>
range_for_t<It,C> range_for(It b,It e,C&& c){
return {std::move(b),std::move(e),std::forward<C>(c)};
}
template<class It>
range_for_t<It,int> range_for(It b,It e){
return {std::move(b),std::move(e)};
}
A simple range for range for only. Can be augmented with perfect forwarding.
Passing C
as the container that may need lifetime extending. If passed as rvalue, copy is made, otherwise just reference. It is otherwise not used.
Next part is easy:
template<class It>
auto reverse_it(It it){
return std::reverse_iterator<It>(std::move(it));
}
template<class C>
auto backwards(C&&c){
using std::begin; using std::end;
auto b=begin(c), e=end(c);
return range_for(
reverse_it(e),reverse_it(b),
std::forward<C>(c)
);
}
That is untested but should work.
One important test is ensuring it works when you feed an rvalue vec like:
for(auto x:backwards(make_vec()))
works -- that is what the mess around storing C
is about. It also assumes that moved container iterators have iterators who behave nicely.