I have explored an XML based API for work-related things, it comes from warehouse data. Ideally I want to do some analysis in python with pandas.
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 28, 19, 30, tzinfo= UTC )) , None, StringAggregateDimensionValue(value=u'VIRTUALLY_LABELED_CASE') ], quantity=127) ,
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 28, 19, 30, tzinfo= UTC )) , StringAggregateDimensionValue(value=u'PPTransMergeNonCon') , StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW') ], quantity=15)
Aggregate(aggregate_dimension_value_list=[ DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 27, 21, 0, tzinfo= UTC )) , StringAggregateDimensionValue(value=u'PPTransFRA1') , StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW') ], quantity=8) ,
The data looks like the above stream, after I did some find and replace in VIM (I know i can just script this in python). How do I best get this weird-format into Pandas? I ideally want datetime, the String aggregatedimension value, and the quantity. But there is a lot of None, in this parse-needed data. In a dataframe it'll be easy to do some analysis, but I'm a bit stumped here (and feel a lot like a n00b).
EDIT: Here is the unregexed and un-replaced data that I get and want to parse. It isn't really XML so XML doesn't work.
[<DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 20, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransCGN1')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=992)>, <
StringAggregateDimensionValue(value=u'PPTransLEJ1')>, <StringAggregateDimensionValue(
value=u'PRIME_BIN_RANDOM_STOW')>], quantity=945)>, <Aggregate(
aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.datetime(2013
, 8, 23, 19, 30, tzinfo=<UTC>))>, None, <StringAggregateDimensionValue(value=u'TOTE')>],
quantity=87)>, <Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(
value=datetime.datetime(2013, 8, 27, 17, 30, tzinfo=<UTC>))>, <
StringAggregateDimensionValue(value=u'PPTransMUC3')>, <StringAggregateDimensionValue(
value=u'TOTE')>], quantity=14)>, <Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 27, 20, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransEUK5')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=339)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 20, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u
'PPTransCGN1')>, <StringAggregateDimensionValue(value=u'TOTE')>], quantity=1731)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 19, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u
'PPTransEUK5')>, quantity=444)>, <Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 19, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransEUK5')>, <
StringAggregateDimensionValue(value=u'TOTE')>], quantity=28)>, <Aggregate(
aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.datetime(2013
, 8, 28, 19, 30, tzinfo=<UTC>))>, <StringAggregateDimensionValue(value=u'PPTransORY1')>,
<StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=69)>, <
Aggregate(aggregate_dimension_value_list=<Aggregate(aggregate_dimension_value_list=[<
DateAggregateDimensionValue(value=datetime.datetime(2013, 8, 26, 19, 30, tzinfo=<UTC
>))>, <StringAggregateDimensionValue(value=u'PPTransMAD4')>, <
StringAggregateDimensionValue(value=u'PRIME_BIN_RANDOM_STOW')>], quantity=47)>, <
Aggregate(aggregate_dimension_value_list=[<DateAggregateDimensionValue(value=datetime.
datetime(2013, 8, 26, 21, 0, tzinfo=<UTC>))>, None, None], quantity=78)>