I have two small data sets:
infected.data.r.p <- structure(list(MLH = c(0.520408163265306, 0.436170212765957,
0.344086021505376, 0.423076923076923, 0.406976744186047), ColGrowthCL_6 = c(5.923728814,
0.283950617, 0.377358491, 1.728070175, 0.2)), .Names = c("MLH",
"ColGrowthCL_6"), row.names = c("12", "22", "28", "30", "34"), class = "data.frame")
and
uninfected.sampling <- structure(list(MLH = c(0.524271844660194, 0.457446808510638,
0.354838709677419, 0.398058252427184, 0.436893203883495), ColGrowthCL_6 = c(4.401639344,
4.827586207, 6.387096774, 6.320754717, 4.225490196)), .Names = c("MLH",
"ColGrowthCL_6"), row.names = c("218", "18", "21", "212", "99"
), class = "data.frame")
When I try to compare these two models using the anova() syntax in R (see below), it fails to produce a p-value. I'm not convinced that it is the nature of the two data sets that's causing the problem (although I'm also curious what exactly is different between the structure of the two data sets), but I suppose it very well could be the problem. Thank you!
Model comparison syntax:
infected.model<-glm(formula=as.formula(ColGrowthCL_6~MLH), family=poisson, infected.data.r.p)
uninfected.model<-glm(formula=as.formula(ColGrowthCL_6~MLH), family=poisson, uninfected.sampling)
compare<-anova(infected.model,uninfected.model,test="Chisq")
print(compare)
summary(compare)