I just figured out an answer:
the premises are:
1. the expression has been tokenized
2. no syntax error
3. there are only binary operators
input:
list of the tokens, for example:
(, (, a, *, b, ), +, c, )
output:
set of the redundant parentheses pairs (the orders of the pairs are not important),
for example,
0, 8
1, 5
please be aware of that : the set is not unique, for instance, ((a+b))*c, we can remove outer parentheses or inner one, but the final expression is unique
the data structure:
a stack, each item records information in each parenthese pair
the struct is:
left_pa: records the position of the left parenthese
min_op: records the operator in the parentheses with minimum priority
left_op: records current operator
the algorithm
1.push one empty item in the stack
2.scan the token list
2.1 if the token is operand, ignore
2.2 if the token is operator, records the operator in the left_op,
if min_op is nil, set the min_op = this operator, if the min_op
is not nil, compare the min_op with this operator, set min_op as
one of the two operators with less priority
2.3 if the token is left parenthese, push one item in the stack,
with left_pa = position of the parenthese
2.4 if the token is right parenthese,
2.4.1 we have the pair of the parentheses(left_pa and the
right parenthese)
2.4.2 pop the item
2.4.3 pre-read next token, if it is an operator, set it
as right operator
2.4.4 compare min_op of the item with left_op and right operator
(if any of them exists), we can easily get to know if the pair
of the parentheses is redundant, and output it(if the min_op
< any of left_op and right operator, the parentheses are necessary,
if min_op = left_op, the parentheses are necessary, otherwise
redundant)
2.4.5 if there is no left_op and no right operator(which also means
min_op = nil) and the stack is not empty, set the min_op of top
item as the min_op of the popped-up item
examples
example one
((a*b)+c)
after scanning to b, we have stack:
index left_pa min_op left_op
0
1 0
2 1 * * <-stack top
now we meet the first ')'(at pos 5), we pop the item
left_pa = 1
min_op = *
left_op = *
and pre-read operator '+', since min_op priority '*' > '+', so the pair(1,5) is redundant, so output it.
then scan till we meet last ')', at the moment, we have stack
index left_pa min_op left_op
0
1 0 + +
we pop this item(since we meet ')' at pos 8), and pre-read next operator, since there is no operator and at index 0, there is no left_op, so output the pair(0, 8)
example two
a*(b+c)
when we meet the ')', the stack is like:
index left_pa min_op left_op
0 * *
1 2 + +
now, we pop the item at index = 1, compare the min_op '+' with the left_op '*' at index 0, we can find out the '(',')' are necessary