Functions idw()
and krige()
from gstat
package keep reporting errors when either response or predictor variable contains missing values (NA
), even when na.action
is set to na.omit
:
require(gstat)
data(meuse)
coordinates(meuse) = ~x+y
data(meuse.grid)
gridded(meuse.grid) = ~x+y
meuse2 <- as.data.frame(meuse)
meuse2[1, 'zinc'] <- NA
meuse2 <- SpatialPointsDataFrame(SpatialPoints(meuse), meuse2)
# idw response var
int <- idw(zinc ~ 1, meuse2, meuse.grid, na.action = na.omit)
# Error: dimensions do not match: locations 310 and data 154
# krige response var
m <- vgm(.59, "Sph", 874, .04)
int <- krige(zinc ~ 1, meuse2, meuse.grid, model = m, na.action = na.omit)
# Error: dimensions do not match: locations 310 and data 154
# krige predictor var
meuse3 <- as.data.frame(meuse)
meuse3[1, 'dist'] <- NA
meuse3 <- SpatialPointsDataFrame(SpatialPoints(meuse), meuse3)
int <- krige(zinc ~ dist, meuse3, meuse.grid, model = m, na.action = na.omit)
# Error: dimensions do not match: locations 310 and data 154
Is this a bug? Do we actually have to filter our data manually and merge the results back to original data frames? Isn't there some easier solution? Why is there the na.action
option then?