I guess I'm late to the party, but I'll offer some insight into collision control with a ton of chattering transmitters on one link, a la 802.11. This is somewhat packetized.
If two transmitters try to transmit at the same time, you're bound to get a mangled mess of rotten bacon at the receivers.
A simplified version of WiFi-style collisions would be good. Basically, it uses preambles that can be detected, and for longer transmissions that have a higher chance of conflicting, it can use shorter request/clear to send packets.
While this is likely overkill, I'd go for preambles. Start by transmitting a steady stream of something recognizable, like in hex, 555533330f0f00ff
which is basically alternating 1s and 0s but with changing frequency(0101, then 0011, then 00001111, and so on), a readily recognizable pattern that is unlikely to be given off by stray radiation or noise.
This pattern could undergo a shift so there's a finite set of other preambles that should be bitwise-shifted relative to the original.
If a transmitter detects this preamble, it should STOP and wait. If you limit all packets to a certain temporal length, collisions should not occur if you wait sufficient time between packets. If during the time of one packet, a preamble is heard, then your station should wait for the full length of the transmission(listening to its length and other header fields so it knows how long to wait). Once the packet is done, your station can transmit its preamble.
This is where the WiFi resemblance stops and simpler protocols take over.
Note that if 2 stations are waiting on a packet they can start their preambles almost simultaneously. To resolve this, each station should have a different zero bit flipped in its preamble. If it detects a 1 for that bit, it sees that there's another station preambling, and should back off.
Each station should wait a certain delay(up to you) after each packet so other stations can start their transmissions.
A few sketches of the communication patterns show that this is sufficient for your needs.
Now if it's a master-slave-style system as long as you only have one network it should be easier since there should only be one outstanding request that would involve a slave transmitting.