The PKCS#1 doc referred to above is more mathematical and doesn't give coding examples, and the CMS answer is for ASN.1/SMIME data and not really relevant for the question asked, which was how to replace RSA_public_encrypt()
which deals with simple binary/text data. I spent a whole day with trial and error and online searching to find the answer to this, and eventually got the answer (which was to use OpenSSL's EVP API) from looking at the source code of "openssl pkeyutl" - once I discovered that it was not difficult.
In my case I was looking to replace RSA_private_decrypt()
for decryption using the private key and this is how to do that - it should be pretty easy to put to together an RSA_public_encrypt() replacement based on this:
EVP_PKEY *privKey = NULL;
BIO *bioPrivKey;
int outLen = 0, ret;
if ((bioPrivKey = BIO_new(BIO_s_mem())))
{
// Read the private key from the RSA context into the memory BIO,
// then convert it to an EVP_PKEY:
if ((ret = PEM_write_bio_RSAPrivateKey(bioPrivKey, rsaCtxt, NULL, NULL, 0, NULL, NULL)) &&
(privKey = PEM_read_bio_PrivateKey(bioPrivKey, NULL, NULL, NULL)))
{
EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(privKey, NULL);
EVP_PKEY_free(privKey);
if (ctx)
{
if (EVP_PKEY_decrypt_init(ctx) > 0)
{
EVP_PKEY_CTX_ctrl_str(ctx, "rsa_padding_mode", "oaep");
EVP_PKEY_CTX_ctrl_str(ctx, "rsa_oaep_md", "sha256");
EVP_PKEY_CTX_ctrl_str(ctx, "rsa_mgf1_md", "sha256");
outLen = dataOutMax;
ret = EVP_PKEY_decrypt(ctx, dataOut, &outLen, dataIn, inDataLen);
if (ret > 0 && outLen > 0 && outLen <= dataOutMax)
{
// Success :-)
}
}
EVP_PKEY_CTX_free(ctx);
}
}
BIO_free_all(bioPrivKey);
}
You can add error handling for the failure cases using ERR_get_error().