Where I need help...
What I want to do now is translate this solution, which calculates the mantissaof a number to c++:
n^m = exp10(m log10(n)) = exp(q (m log(n)/q)) where q = log(10)
Finding the first n digits from the result can be done like this:
"the first K digits of exp10(x) = the first K digits of exp10(frac(x))
where frac(x) = the fractional part of x = x - floor(x)."
My attempts (sparked by the math and this code) failed...:
u l l function getPrefix(long double pow /*exponent*/, long double length /*length of prefix*/)
{
long double dummy; //unused but necessary for modf
long double q = log(10);
u l l temp = floor(pow(10.0, exp(q * modf( (pow * log(2)/q), &dummy) + length - 1));
return temp;
}
If anyone out there can correctly implement this solution, I need your help!!
EDIT
Example output from my attempts:
n: 2
m: 0
n^m: 1
Calculated mantissa: 1.16334
n: 2
m: 1
n^m: 2
Calculated mantissa: 2.32667
n: 2
m: 2
n^m: 4
Calculated mantissa: 4.65335
n: 2
m: 98
n^m: 3.16913e+29
Calculated mantissa: 8.0022
n: 2
m: 99
n^m: 6.33825e+29
Calculated mantissa: 2.16596