Estimated sanjan:
The idea behind Dijkstra's Algorithm is to explore all the nodes of the graph in an ordered way. The algorithm stores a priority queue where the nodes are ordered according to the cost from the start, and in each iteration of the algorithm the following operations are performed:
- Extract from the queue the node with the lowest cost from the start, N
- Obtain its neighbors (N') and their associated cost, which is cost(N) + cost(N, N')
- Insert in queue the neighbor nodes N', with the priority given by their cost
It's true that the algorithm calculates the cost of the path between the start (A in your case) and all the rest of the nodes, but you can stop the exploration of the algorithm when it reaches the goal (Z in your example). At this point you know the cost between A and Z, and the path connecting them.
I recommend you to use a library which implements this algorithm instead of coding your own. In Java, you might take a look to the Hipster library, which has a very friendly way to generate the graph and start using the search algorithms.
Here you have an example of how to define the graph and start using Dijstra with Hipster.
// Create a simple weighted directed graph with Hipster where
// vertices are Strings and edge values are just doubles
HipsterDirectedGraph<String,Double> graph = GraphBuilder.create()
.connect("A").to("B").withEdge(4d)
.connect("A").to("C").withEdge(2d)
.connect("B").to("C").withEdge(5d)
.connect("B").to("D").withEdge(10d)
.connect("C").to("E").withEdge(3d)
.connect("D").to("F").withEdge(11d)
.connect("E").to("D").withEdge(4d)
.buildDirectedGraph();
// Create the search problem. For graph problems, just use
// the GraphSearchProblem util class to generate the problem with ease.
SearchProblem p = GraphSearchProblem
.startingFrom("A")
.in(graph)
.takeCostsFromEdges()
.build();
// Search the shortest path from "A" to "F"
System.out.println(Hipster.createDijkstra(p).search("F"));
You only have to substitute the definition of the graph for your own, and then instantiate the algorithm as in the example.
I hope this helps!