Can you explain this bizarre behaviour?
df=pd.DataFrame({'year':[1986,1987,1988],'bomb':arange(3)}).set_index('year')
In [9]: df.reindex(arange(1986,1988.125,.125))
Out[9]:
bomb
1986.000 0
1986.125 NaN
1986.250 NaN
1986.375 NaN
1986.500 NaN
1986.625 NaN
1986.750 NaN
1986.875 NaN
1987.000 1
1987.125 NaN
1987.250 NaN
1987.375 NaN
1987.500 NaN
1987.625 NaN
1987.750 NaN
1987.875 NaN
1988.000 2
In [10]: df.reindex(arange(1986,1988.1,.1))
Out[10]:
bomb
1986.0 0
1986.1 NaN
1986.2 NaN
1986.3 NaN
1986.4 NaN
1986.5 NaN
1986.6 NaN
1986.7 NaN
1986.8 NaN
1986.9 NaN
1987.0 NaN
1987.1 NaN
1987.2 NaN
1987.3 NaN
1987.4 NaN
1987.5 NaN
1987.6 NaN
1987.7 NaN
1987.8 NaN
1987.9 NaN
1988.0 NaN
When the increment is anything other than .125, I find that the new index values do not "find" the old rows that have matching values. ie there is a precision problem that is not being overcome. This is true even if I force the index to be a float before I try to interpolate. What is going on and/or what is the right way to do this? I've been able to get it to work with increment of 0.1 by using
reindex( np.array(map(round,arange(1985,2010+dt,dt)*10))/10.0 )
By the way, I'm doing this as the first step in linearly interpolating a number of columns (e.g. "bomb" is one of them). If there's a nicer way to do that, I'd happily be set straight.