All of vpekar's suggestions are good. Here is some python code that will at least parse the sentences and see if they contain verbs in a user defined set of harm words. Note: most 'harm words' probably have multiple senses, many of which could have nothing to do with harm. This approach does not attempt to disambiguate word sense.
(This code assumes you have NLTK and Stanford CoreNLP)
import os
import subprocess
from xml.dom import minidom
from nltk.corpus import wordnet as wn
def StanfordCoreNLP_Plain(inFile):
#Create the startup info so the java program runs in the background (for windows computers)
startupinfo = None
if os.name == 'nt':
startupinfo = subprocess.STARTUPINFO()
startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW
#Execute the stanford parser from the command line
cmd = ['java', '-Xmx1g','-cp', 'stanford-corenlp-1.3.5.jar;stanford-corenlp-1.3.5-models.jar;xom.jar;joda-time.jar', 'edu.stanford.nlp.pipeline.StanfordCoreNLP', '-annotators', 'tokenize,ssplit,pos', '-file', inFile]
output = subprocess.Popen(cmd, stdout=subprocess.PIPE, startupinfo=startupinfo).communicate()
outFile = file(inFile[(str(inFile).rfind('\\'))+1:] + '.xml')
xmldoc = minidom.parse(outFile)
itemlist = xmldoc.getElementsByTagName('sentence')
Document = []
#Get the data out of the xml document and into python lists
for item in itemlist:
SentNum = item.getAttribute('id')
sentList = []
tokens = item.getElementsByTagName('token')
for d in tokens:
word = d.getElementsByTagName('word')[0].firstChild.data
pos = d.getElementsByTagName('POS')[0].firstChild.data
sentList.append([str(pos.strip()), str(word.strip())])
Document.append(sentList)
return Document
def FindHarmSentence(Document):
#Loop through sentences in the document. Look for verbs in the Harm Words Set.
VerbTags = ['VBN', 'VB', 'VBZ', 'VBD', 'VBG', 'VBP', 'V']
HarmWords = ("shoot", "kill")
ReturnSentences = []
for Sentence in Document:
for word in Sentence:
if word[0] in VerbTags:
try:
wordRoot = wn.morphy(word[1],wn.VERB)
if wordRoot in HarmWords:
print "This message could indicate harm:" , str(Sentence)
ReturnSentences.append(Sentence)
except: pass
return ReturnSentences
#Assuming your input is a string, we need to put the strings in some file.
Sentences = "I bought my son a toy gun. I shot my neighbor with a gun. I don't like this gun. I would love to own this gun. This gun is a very good buy. Feel like shooting myself with a gun."
ProcessFile = "ProcFile.txt"
OpenProcessFile = open(ProcessFile, 'w')
OpenProcessFile.write(Sentences)
OpenProcessFile.close()
#Sentence split, tokenize, and part of speech tag the data using Stanford Core NLP
Document = StanfordCoreNLP_Plain(ProcessFile)
#Find sentences in the document with harm words
HarmSentences = FindHarmSentence(Document)
This outputs the following:
This message could indicate harm: [['PRP', 'I'], ['VBD', 'shot'], ['PRP$', 'my'], ['NN', 'neighbor'], ['IN', 'with'], ['DT', 'a'], ['NN', 'gun'], ['.', '.']]
This message could indicate harm: [['NNP', 'Feel'], ['IN', 'like'], ['VBG', 'shooting'], ['PRP', 'myself'], ['IN', 'with'], ['DT', 'a'], ['NN', 'gun'], ['.', '.']]