Support for map reduce probably shouldn't be the thing on which to base your choice of a datastore.
Firstly, map reduce isn't the only way to do large-scale data processing. For example, MongoDB implemented map reduce support early (in v1), but later added their Aggregation Framework which was much more general, subsuming many tasks that would make use of map reduce.
Map reduce is just one paradigm for processing large data sets. Use it only if your application needs to process a large number of data records with a mapper and then needs to combine results together with a reducer. That's all it really does. As to when the paradigm is applicable and when it is not, simply look at your use case. Do you need to manipulate all of your records consistently and then combine the results? Or is there another way to phrase your problem?
Take a look at the Mongo aggregation framework for examples of where aggregation is used as a simpler alternative to many problems for which forcing them into a map-reduce problem would be overkill.
It should also help give you insight into your question of whether you can do large-scale data processing without map-reduce, to which the answer is yes. Clearly map-reduce is good for making search indexes, but many problems on large data sets benefit from other paradigms.
A web search on "alternatives to map reduce" will also be helpful.