Analyzing algorithms for asymptotic performance is working on the operations that must be performed and the cost they add to the equation. For that you need to first know what are the performed operations and then evaluate its costs.
Searching for a key in a balanced binary tree (which maps happen to be) require O( log N ) complex operations. Each of those operations implies comparing the key for a match and following the appropriate pointer (child) if the key did not match. This means that the overall cost is proportional to log N times the cost of those two operations. Following pointers is a constant time operation O(1), and comparing keys depend on the key. For an integer key, comparisons are fast O(1). Comparing two strings is another story, it takes time proportional to the sizes of the strings involved O(L) (where I have used intentionally L as the length of string parameter instead of the more common N.
When you sum all the costs up you get that using integers as keys the total cost is O( log N )*( O(1) + O(1) ) that is equivalent to O( log N ). (O(1) gets hidden in the constant that the O notation silently hides.
If you use strings as keys, the total cost is O( log N )*( O(L) + O(1) ) where the constant time operation gets hidden by the more costly linear operation O(L) and can be converted into O( L * log N ). That is, the cost of locating an element in a map keyed by strings is proportional to the logarithm of the number of elements stored in the map times the average length of the strings used as keys.