I am using R to run a simulation in which I use a likelihood ratio test to compare two nested item response models. One version of the LRT uses the joint likelihood function L(θ,ρ) and the other uses the marginal likelihood function L(ρ). I want to integrate L(θ,ρ) over f(θ) to obtain the marginal likelihood L(ρ). I have two conditions: in one, f(θ) is standard normal (μ=0,σ=1), and my understanding is that I can just pick a number of abscissa points, say 20 or 30, and use Gauss-Hermite quadrature to approximate this density. But in the other condition, f(θ) is a linearly transformed beta distribution (a=1.25,b=10), where the linear transformation B'=11.14*(B-0.11) is such that B' also has (approximately) μ=0,σ=1.
I am confused enough about how to implement quadrature for a beta distribution but then the linear transformation confuses me even more. My question is threefold: (1) can I use some variation of quadrature to approximate f(θ) when θ is distributed as this linearly transformed beta distribution, (2) how would I implement this in R, and (3) is this a ridiculous waste of time such that there is an obviously much faster and better method to accomplish this task? (I tried writing my own numerical approximation function but found that my implementation of it, being limited to the R language, was just too slow to suffice.)
Thanks!