If your global-memory really runs faster than your local-memory version (assuming both are equally optimized depending on the memory space you're using), maybe this paper could answer your question.
Here's a summary of what it says:
Usage of local memory in a kernel add another constraint to the number of concurrent workgroups that can be run on the same compute unit.
Thus, in certain cases, it may be more efficient to remove this constraint and live with the high latency of global memory accesses. More wavefronts (warps in NVidia-parlance, each workgroup is divided into wavefronts/warps) running on the same compute unit allow your GPU to hide latency better: if one is waiting for a memory access to complete, another can compute during this time.
In the end, each kernel will take more wall-time to proceed, but your GPU will be completely busy because it is running more of them concurrently.