My question concerns the extent to which a JVM application can exploit the NUMA layout of a host.
I have an Akka application in which actors concurrently process requests by combining incoming data with 'common' data already loaded into an immutable (Scala) object. The application scales well in the cloud, using many dual core VMs, but performs poorly on a single 64 core machine. I presume this is because the common data object resides in one NUMA cell and many threads concurrently accessing from other cells is too much for the interconnects.
If I run 64 separate JVM applications each containing 1 actor then performance is is good again. A more moderate approach might be to run as many JVM applications as there are NUMA cells (8 in my case), giving the host OS a chance to keep the threads and memory together?
But is there a smarter way to achieve the same effect within a single JVM? E.g. if I replaced my common data object with several instances of a case class, would the JVM have the capability to place them on the optimal NUMA cell?
Update:
I'm using Oracle JDK 1.7.0_05, and Akka 2.1.4
I've now tried with the UseNUMA and UseParallelGC JVM options. Neither seemed to have any significant impact on slow performance when using one or few JVMs. I've also tried using a PinnedDispatcher and the thre-pool-executor with no effect. I'm not sure if the configuration is having an effect though, since there seems nothing different in the startup logs.
The biggest improvement remains when I use a single JVM per worker (~50). However, the problem with this appears to be that there is a long delay (up to a couple of min) before the FailureDector registers the successful exchange of 'first heartbeat' between Akka cluster JVMs. I suspect there is some other issue here that I've not yet uncovered. I already had to increase the ulimit -u since I was hitting the default maximum number of processes (1024).
Just to clarify, I'm not trying to achieve large numbers of messages, just trying to have lots of separate actors concurrently access an immutable object.