I'm having difficulty conceptualising a requirement I have into something that will fit into our nascent SOA/EDA
We have a component I'll call the Data Downloader. This is a facade for an external data provider that has both high latency and a cost associated with every request. I want to take this component and create a re-usable service out of it with a clear contract definition. It is up to me to decide how that contract should work, however its responsibilities are two-fold:
- Maintain the parameter list (called a Download Definition) for an upcoming scheduled download
- Manage the technical details of the communication to the external service
Basically, it manages the 'how' of the communication. The 'what' and the 'when' are the responsibilities of two other components:
The 'what' is managed by 'Clients' who are responsible for determining the parameters for the download.
The 'when' is managed by a dedicated scheduling component. Because of the cost associated with the downloads we'd like to batch the requests intraday.
Hopefully this sequence diagram explains the responsibilities of the services:
Because each of the responsibilities are split out in three different components, we get all sorts of potential race conditions with async messaging. For instance when the Scheduler tells the Downloader to do its work, because the 'Append to Download Definition' command is asynchronous, there is no guarantee that the pending requests from Client A have actually been serviced. But this all screams high-coupling to me; why should the Scheduler necessarily know about any 'prerequisite' client requests that need to have been actioned before it can invoke a download?
Some potential solutions we've toyed with:
Make the 'Append to Download Definition' command a blocking request/response operation. But this then breaks the perf. and scalability benefits of having an EDA
Build something in the Downloader to ensure that it only runs when there are no pending commands in its incoming request queue. But that then introduces a dependency on the underlying messaging infrastructure which I don't like either.
Makes me think I'm thinking about this problem in a completely backward way. Or is this just a classic case of someone trying to fit a synchronous RPC requirement into an async event-driven architecture?