I'm working on a number-crunching application and I'm trying to squeeze all possible performance out of it that I can. I'm designing it to work for both Windows and *nix and even for multi-CPU machines.
The way I have it currently set up, it asks the OS how many cores there are, sets affinity on each core to a function that runs a CPUID ASM command (yes, it'll get run multiple times on the same CPU; no biggie, it's just initialization code) and checks for HyperThreading in the Features request of CPUID. From the responses to the CPUID command it calculates how many threads it should run. Of course, if a core/CPU supports HyperThreading it will spawn two on a single core.
However, I ran into a branch case with my own machine. I run an HP laptop with a Core 2 Duo. I replaced the factory processor a while back with a better Core 2 Duo that supports HyperThreading. However, the BIOS does not support it as the factory processor didn't. So, even though the CPU reports that it has HyperThreading it's not capable of utilizing it.
I'm aware that in Windows you can detect HyperThreading by simply counting the logical cores (as each physical HyperThreading-enabled core is split into two logical cores). However, I'm not sure if such a thing is available in *nix (particularly Linux; my test bed).
If HyperTreading is enabled on a dual-core processor, wil the Linux function sysconf(_SC_NPROCESSORS_CONF) show that there are four processors or just two?
If I can get a reliable count on both systems then I can simply skip the CPUID-based HyperThreading checking (after all, it's a possibility that it is disabled/not available in BIOS) and use what the OS reports, but unfortunately because of my branch case I'm not able to determine this.
P.S.: In my Windows section of the code I am parsing the return of GetLogicalProcessorInformation()
Bonus points: Anybody know how to mod a BIOS so I can actually HyperThread my CPU ;)? Motherboard is an HP 578129-001 with the AMD M96 chipset (yuck).