I'm writing a neural network for prediction of elements in a time series x + sin(x^2)
in R, using the neuralnet
package. This is how training data is being generated, assuming a window of 4 elements, and that the last one is the one that has to be predicted:
nntr0 <- ((1:25) + sin((1:25)^2))
nntr1 <- ((2:26) + sin((2:26)^2))
nntr2 <- ((3:27) + sin((3:27)^2))
nntr3 <- ((4:28) + sin((4:28)^2))
nntr4 <- ((5:29) + sin((5:29)^2))
Then, I turn these into a data.frame:
nntr <- data.frame(nntr0, nntr1, nntr2, nntr3, nntr4)
Then, I proceed to train the NN:
net.sinp <- neuralnet(nntr4 ~ nntr0 + nntr1 + nntr2 + nntr3, data=nntr, hidden=10, threshold=0.04, act.fct="tanh", linear.output=TRUE, stepmax=100000)
Which, after a while, gives me the message
Warning message:
algorithm did not converge in 1 of 1 repetition(s) within the stepmax
Call: neuralnet(formula = nntr4 ~ nntr0 + nntr1 + nntr2 + nntr3, data = nntr, hidden = 10, threshold = 0.04, stepmax = 100000, act.fct = "tanh", linear.output = TRUE)
Can anyone help me figure out why it is not converging? Many thanks