I have a system of mono-disperse spheres inside a cubic box. I am studying the volume distribution inside the sample, after tessellating it with either Voronoi and Delaunay tessellations. I am interested on some properties which should not depend on the tessellation.
Currently, I am comparing with the values obtained from Voronoi and Delaunay. I would like to know if you are familiar with another space partition approach (It is important that the final sum of the individual cells add up to the total volume, and the cells should be disjoint). Furthermore, in case you know another kind of tessellation, do you also know a library which already implements it, preferable in C/C++ or python?
Some variations, like Laguerre partitions, coincide with my current Voronoi approach since the spheres are mono-disperse. Another candidate will be the Centroidal Voronoi tessellation, although I have not found yet a library to do that (although it could lead to evenly spaced cells which does not reflect the disorder inside the system, which is not desirable).
Thanks in advance for your kind help.