I'm developing on an AD Blackfin BF537 DSP running uClinux. I have a total of 32MB SD-RAM available. I have an ADC attached, which I can access using a simple, blocking call to read()
.
The most interesting part of my code is below. Running the program seems to work just fine, I get a nice data package that I can fetch from the SD-card and plot. However, if I comment out the float calculation part (as noted in the code), I get only zeroes in the ft_all.raw file. The same occurs if I change optimization level from -O3 to -O0.
I've tried countless combinations of all sorts of things, and sometimes it works, sometimes it does not - earlier (with minor modifications to below), the code would only work when optimization was disabled. It may also break if I add something else further down in the file.
My suspicion is that the data transferred by the read()
-function may not have been transferred fully (is that possible, even though it returns the correct number of bytes?). This is also the first time I initialize pointers using direct memory adresses, and I have no idea how the compiler reacts to this - perhaps I missed something, here?
I've spent days on this issue now, and I'm getting desperate - I would really appreciate some help on this one! Thanks in advance.
// Clear the top 16M memory for data processing
memset((int *)0x01000000,0x0000,(size_t)SIZE_16M);
/* Prep some pointers for data processing */
int16_t *buffer;
int16_t *buf16I, *buf16Q;
buffer = (int16_t *)(0x1000000);
buf16I = (int16_t *)(0x1600000);
buf16Q = (int16_t *)(0x1680000);
/* Read data from ADC */
int rbytes = read(Sportfd, (int16_t*)buffer, 0x200000);
if (rbytes != 0x200000) {
printf("could not sample data! %X\n",rbytes);
goto end;
} else {
printf("Read %X bytes\n",rbytes);
}
FILE *outfd;
int wbytes;
/* Commenting this region results in all zeroes in ft_all.raw */
float a,b;
int c;
b = 0;
for (c = 0; c < 1000; c++) {
a = c;
b = b+pow(a,3);
}
printf("b is %.2f\n",b);
/* Only 12 LSBs of each 32-bit word is actual data.
* First 20 bits of nothing, then 12 bits I, then 20 bits
* nothing, then 12 bits Q, etc...
* Below, the I and Q parts are scaled with a factor of 16
* and extracted to buf16I and buf16Q.
* */
int32_t *buf32;
buf32 = (int32_t *)buffer;
uint32_t i = 0;
uint32_t n = 0;
while (n < 0x80000) {
buf16I[i] = buf32[n] << 4;
n++;
buf16Q[i] = buf32[n] << 4;
i++;
n++;
}
printf("Saving to /mnt/sd/d/ft_all.raw...");
outfd = fopen("/mnt/sd/d/ft_all.raw", "w+");
if (outfd == NULL) {
printf("Could not open file.\n");
}
wbytes = fwrite((int*)0x1600000, 1, 0x100000, outfd);
fclose(outfd);
if (wbytes < 0x100000) {
printf("wbytes not correct (= %d) \n", (int)wbytes);
}
printf(" done.\n");
Edit: The code seems to work perfectly well if I use read() to read data from a simple file rather than the ADC. This leads me to believe that the rather hacky-looking code when extracting the I and Q parts of the input is working as intended. Inspecting the assembly generated by the compiler confirms this.
I'm trying to get in touch with the developer of the ADC driver to see if he has an explanation of this behaviour.
The ADC is connected through a SPORT, and is opened as such:
sportfd = open("/dev/sport1", O_RDWR);
ioctl(sportfd, SPORT_IOC_CONFIG, spconf);
And here are the options used when configuring the SPORT:
spconf->int_clk = 1;
spconf->word_len = 32;
spconf->serial_clk = SPORT_CLK;
spconf->fsync_clk = SPORT_CLK/34;
spconf->fsync = 1;
spconf->late_fsync = 1;
spconf->act_low = 1;
spconf->dma_enabled = 1;
spconf->tckfe = 0;
spconf->rckfe = 1;
spconf->txse = 0;
spconf->rxse = 1;
A bfin_sport.h file from Analog Devices is also included: https://gist.github.com/tausen/5516954
Update After a long night of debugging with the previous developer on the project, it turned out the issue was not related to the code shown above at all. As Chris suggested, it was indeed an issue with the SPORT driver and the ADC configuration.
While debugging, this error messaged appeared whenever the data was "broken": bfin_sport: sport ffc00900 status error: TUVF
. While this doesn't make much sense in the application, it was clear from printing the data, that something was out of sync: the data in buffer was on the form 0x12000000,0x34000000,...
rather than 0x00000012,0x00000034,...
whenever the status error was shown. It seems clear then, why buf16I and buf16Q only contained zeroes (since I am extracting the 12 LSBs).
Putting in a few calls to usleep()
between stages of ADC initialization and configuration seems to have fixed the issue - I'm hoping it stays that way!