Suppose this API is given and we cannot change it:
object ProviderAPI {
trait Receiver[T] {
def receive(entry: T)
def close()
}
def run(r: Receiver[Int]) {
new Thread() {
override def run() {
(0 to 9).foreach { i =>
r.receive(i)
Thread.sleep(100)
}
r.close()
}
}.start()
}
}
In this example, ProviderAPI.run
takes a Receiver
, calls receive(i)
10 times and then closes. Typically, ProviderAPI.run
would call receive(i)
based on a collection which could be infinite.
This API is intended to be used in imperative style, like an external iterator. If our application needs to filter, map and print this input, we need to implement a Receiver which mixes all these operations:
object Main extends App {
class MyReceiver extends ProviderAPI.Receiver[Int] {
def receive(entry: Int) {
if (entry % 2 == 0) {
println("Entry#" + entry)
}
}
def close() {}
}
ProviderAPI.run(new MyReceiver())
}
Now, the question is how to use the ProviderAPI in functional style, internal iterator (without changing the implementation of ProviderAPI, which is given to us). Note that ProviderAPI could also call receive(i)
infinite times, so it is not an option to collect everything in a list (also, we should handle each result one by one, instead of collecting all the input first, and processing it afterwards).
I am asking how to implement such a ReceiverToIterator
, so that we can use the ProviderAPI in functional style:
object Main extends App {
val iterator = new ReceiverToIterator[Int] // how to implement this?
ProviderAPI.run(iterator)
iterator
.view
.filter(_ % 2 == 0)
.map("Entry#" + _)
.foreach(println)
}
Update
Here are four solutions:
IteratorWithSemaphorSolution: The workaround solution I proposed first attached to the question
QueueIteratorSolution: Using the
BlockingQueue[Option[T]]
based on the suggestion of nadavwr. It allows the producer to continue producing up toqueueCapacity
before being blocked by the consumer.PublishSubjectSolution: Very simple solution, using
PublishSubject
from Netflix RxJava-Scala API.SameThreadReceiverToTraversable: Very simple solution, by relaxing the constraints of the question