The next one should be 33550336.
Your code (I fixed the indentation so that it does in principle what you want):
i = 2
a = open("perfect.txt", 'w')
a.close()
while True:
sum = 0
for x in range(1, i+1):
if i%x == 0:
sum += x
if sum / 2 == i:
a = open("perfect.txt", 'a')
a.write(str(i) + "\n")
a.close()
i += 1
does i
divisions to find the divisors of i
.
So to find the perfect numbers up to n
, it does
2 + 3 + 4 + ... + (n-1) + n = n*(n+1)/2 - 1
divisions in the for
loop.
Now, for n = 33550336
, that would be
Prelude> 33550336 * (33550336 + 1) `quot` 2 - 1
562812539631615
roughly 5.6 * 1014 divisions.
Assuming your CPU could do 109 divisions per second (it most likely can't, 108 is a better estimate in my experience, but even that is for machine int
s in C), that would take about 560,000 seconds. One day has 86400 seconds, so that would be roughly six and a half days (more than two months with the 108 estimate).
Your algorithm is just too slow to reach that in reasonable time.
If you don't want to use number-theory (even perfect numbers have a very simple structure, and if there are any odd perfect numbers, those are necessarily huge), you can still do better by dividing only up to the square root to find the divisors,
i = 2
a = open("perfect.txt", 'w')
a.close()
while True:
sum = 1
root = int(i**0.5)
for x in range(2, root+1):
if i%x == 0:
sum += x + i/x
if i == root*root:
sum -= x # if i is a square, we have counted the square root twice
if sum == i:
a = open("perfect.txt", 'a')
a.write(str(i) + "\n")
a.close()
i += 1
that only needs about 1.3 * 1011 divisions and should find the fifth perfect number in a couple of hours.
Without resorting to the explicit formula for even perfect numbers (2^(p-1) * (2^p - 1)
for primes p
such that 2^p - 1
is prime), you can speed it up somewhat by finding the prime factorisation of i
and computing the divisor sum from that. That will make the test faster for all composite numbers, and much faster for most,
def factorisation(n):
facts = []
multiplicity = 0
while n%2 == 0:
multiplicity += 1
n = n // 2
if multiplicity > 0:
facts.append((2,multiplicity))
d = 3
while d*d <= n:
if n % d == 0:
multiplicity = 0
while n % d == 0:
multiplicity += 1
n = n // d
facts.append((d,multiplicity))
d += 2
if n > 1:
facts.append((n,1))
return facts
def divisorSum(n):
f = factorisation(n)
sum = 1
for (p,e) in f:
sum *= (p**(e+1) - 1)/(p-1)
return sum
def isPerfect(n):
return divisorSum(n) == 2*n
i = 2
count = 0
out = 10000
while count < 5:
if isPerfect(i):
print i
count += 1
if i == out:
print "At",i
out *= 5
i += 1
would take an estimated 40 minutes on my machine.
Not a bad estimate:
$ time python fastperf.py
6
28
496
8128
33550336
real 36m4.595s
user 36m2.001s
sys 0m0.453s