Hello Stack Overflow people, I have spent a while searching for a solution to my problem, but not found anything, so thought I would post.
Basically I have a dataset of 196 countries listed in alphabetical order. One of the variables assigns a number from 1-10 depending on what region the country is in. For example Eastern Europe = 1, Western Europe = 2, Middle East = 3, South America = 4 and so on.
Here is a visual representation of the dataset:
Country Name------Country Region------Infant Mortality Rate
Afghanistan------------3------------------------180
Argentina---------------4------------------------65
France------------------2------------------------12
Germany---------------2------------------------10
Poland------------------1-----------------------16
What I need to do is split up the 10 regions into their own individual dummy variables, in order for me to run them through a multivariate regression to determine the individual effect they have on infant mortality rate.
I was wondering what the necessary code would be to create the dummy variables (1 = Eastern Europe, 0 = Other etc) and then how to test their effect both individually and in a multivariate regression.
Sorry if this seems simple or a stupid question, I am fairly new to using R.
Thanks for the help in advance.
Edit: This is the dput output as requested:
structure(list(Country.Name = structure(c(1L, 2L, 3L, 4L, 5L,
6L, 11L, 7L, 9L, 10L, 12L, 13L, 14L, 8L, 15L, 17L, 20L, 21L,
22L, 23L, 24L, 18L, 156L, 25L, 26L, 120L, 28L, 16L, 29L, 30L,
31L, 32L, 33L, 160L, 34L, 35L, 36L, 170L, 37L, 38L, 39L, 40L,
41L, 43L, 44L, 45L, 46L, 19L, 47L, 49L, 50L, 51L, 53L, 54L, 57L,
55L, 56L, 58L, 59L, 60L, 48L, 61L, 63L, 62L, 64L, 65L, 88L, 66L,
67L, 68L, 69L, 71L, 72L, 73L, 74L, 75L, 76L, 77L, 78L, 79L, 80L,
81L, 82L, 42L, 83L, 84L, 86L, 85L, 87L, 89L, 90L, 91L, 92L, 93L,
95L, 96L, 94L, 97L, 98L, 99L, 100L, 101L, 103L, 104L, 105L, 106L,
107L, 108L, 110L, 111L, 112L, 115L, 116L, 114L, 117L, 118L, 119L,
130L, 121L, 122L, 123L, 124L, 189L, 125L, 126L, 127L, 128L, 129L,
113L, 109L, 132L, 131L, 133L, 134L, 135L, 136L, 137L, 138L, 139L,
70L, 174L, 140L, 141L, 142L, 143L, 161L, 162L, 163L, 145L, 146L,
147L, 148L, 149L, 151L, 152L, 153L, 154L, 191L, 155L, 157L, 158L,
194L, 159L, 164L, 165L, 166L, 167L, 168L, 169L, 171L, 173L, 175L,
176L, 177L, 184L, 178L, 179L, 180L, 181L, 182L, 183L, 102L, 52L,
185L, 172L, 186L, 27L, 187L, 188L, 190L, 144L, 192L, 150L, 193L
), .Label = c("Afghanistan", "Albania", "Algeria", "Andorra",
"Angola", "Antigua and Barbuda", "Argentina", "Armenia", "Australia",
"Austria", "Azerbaijan", "Bahamas", "Bahrain", "Bangladesh",
"Barbados", "Belarus", "Belgium", "Belize", "Benin", "Bhutan",
"Bolivia", "Bosnia and Herzegovina", "Botswana", "Brazil", "Brunei",
"Bulgaria", "Burkina Faso", "Burundi", "Cambodia", "Cameroon",
"Canada", "Cape Verde", "Central African Republic", "Chad", "Chile",
"China", "Colombia", "Comoros", "Congo", "Congo, Democratic Republic",
"Costa Rica", "Cote d'Ivoire", "Croatia", "Cuba", "Cyprus", "Czech Republic",
"Denmark", "Djibouti", "Dominica", "Dominican Republic", "Ecuador",
"Egypt", "El Salvador", "Equatorial Guinea", "Eritrea", "Estonia",
"Ethiopia", "Fiji", "Finland", "France", "Gabon", "Gambia", "Georgia",
"Germany", "Ghana", "Greece", "Grenada", "Guatemala", "Guinea",
"Guinea-Bissau", "Guyana", "Haiti", "Honduras", "Hungary", "Iceland",
"India", "Indonesia", "Iran", "Iraq", "Ireland", "Israel", "Italy",
"Jamaica", "Japan", "Jordan", "Kazakhstan", "Kenya", "Kiribati",
"Korea, North", "Korea, South", "Kuwait", "Kyrgyzstan", "Laos",
"Latvia", "Lebanon", "Lesotho", "Liberia", "Libya", "Liechtenstein",
"Lithuania", "Luxembourg", "Macedonia", "Madagascar", "Malawi",
"Malaysia", "Maldives", "Mali", "Malta", "Marshall Islands",
"Mauritania", "Mauritius", "Mexico", "Micronesia", "Moldova",
"Monaco", "Mongolia", "Montenegro", "Morocco", "Mozambique",
"Myanmar", "Namibia", "Nauru", "Nepal", "Netherlands", "New Zealand",
"Nicaragua", "Niger", "Nigeria", "Norway", "Oman", "Pakistan",
"Palau", "Panama", "Papua New Guinea", "Paraguay", "Peru", "Philippines",
"Poland", "Portugal", "Qatar", "Romania", "Russia", "Rwanda",
"Samoa", "San Marino", "Sao Tome and Principe", "Saudi Arabia",
"Senegal", "Serbia", "Serbia and Montenegro", "Seychelles", "Sierra Leone",
"Singapore", "Slovakia", "Slovenia", "Solomon Islands", "Somalia",
"South Africa", "Spain", "Sri Lanka", "St Kitts and Nevis", "St Lucia",
"St Vincent and the Grenadines", "Sudan", "Suriname", "Swaziland",
"Sweden", "Switzerland", "Syria", "Taiwan", "Tajikistan", "Tanzania",
"Thailand", "Timor-Leste", "Togo", "Tonga", "Trinidad and Tobago",
"Tunisia", "Turkey", "Turkmenistan", "Tuvalu", "Uganda", "Ukraine",
"United Arab Emirates", "United Kingdom", "United States", "Uruguay",
"Uzbekistan", "Vanuatu", "Venezuela", "Vietnam", "Yemen", "Zambia",
"Zimbabwe"), class = "factor"), Country.Region = c(8L, 1L, 3L,
5L, 4L, 10L, 1L, 2L, 5L, 5L, 10L, 3L, 8L, 1L, 10L, 5L, 8L, 2L,
1L, 4L, 2L, 10L, 9L, 7L, 1L, 7L, 4L, 1L, 7L, 4L, 5L, 4L, 4L,
8L, 4L, 2L, 6L, 6L, 2L, 4L, 4L, 4L, 2L, 1L, 2L, 3L, 1L, 4L, 5L,
10L, 2L, 2L, 2L, 4L, 4L, 4L, 1L, 9L, 5L, 5L, 4L, 4L, 1L, 4L,
5L, 4L, 9L, 5L, 10L, 2L, 4L, 10L, 2L, 2L, 1L, 5L, 8L, 7L, 3L,
3L, 5L, 3L, 5L, 4L, 10L, 6L, 1L, 3L, 4L, 6L, 6L, 3L, 1L, 7L,
3L, 4L, 1L, 4L, 3L, 5L, 1L, 5L, 4L, 4L, 7L, 8L, 4L, 5L, 4L, 4L,
2L, 5L, 6L, 1L, 1L, 3L, 4L, 3L, 4L, 9L, 8L, 5L, 9L, 5L, 2L, 4L,
4L, 5L, 9L, 9L, 9L, 8L, 2L, 9L, 2L, 2L, 7L, 1L, 5L, 4L, 7L, 3L,
1L, 1L, 4L, 10L, 10L, 10L, 5L, 4L, 3L, 4L, 1L, 4L, 4L, 7L, 1L,
7L, 1L, 4L, 4L, 4L, 5L, 4L, 10L, 4L, 5L, 5L, 3L, 1L, 7L, 4L,
9L, 10L, 3L, 3L, 3L, 1L, 9L, 4L, 1L, 1L, 3L, 5L, 4L, 5L, 4L,
2L, 1L, 2L, 9L, 3L, 1L, 4L), Under.5.Mortality.Rate = c(137.3500061,
20.40999985, 30.80999947, 6.579999924, 178.6000061, 22.02000046,
51.13999939, 20.05999947, 6.059999943, 5.46999979, 19.12000084,
11.18999958, 79.55999756, 28.54000092, 19.89999962, 5.639999866,
79.80999756, 56.77999878, 9.569999695, 58.18000031, 28.07999992,
29.54999924, 34.72999954, 9.199999809, 15.46000004, 72.59999847,
145.4600067, 14.72000027, 85.63999939, 132.8600006, 6.480000019,
42.68000031, 150.5, 15.02999973, 185.2100067, 10.13000011, 27.06999969,
7.619999886, 22.79000092, 78.52999878, 113.0199966, 165.1199951,
13.39999962, 7.949999809, 7.730000019, 5.590000153, 6.460000038,
128.3200073, 5.489999771, 20.05999947, 35.97000122, 31.18000031,
30.44000053, 180.1799927, 126.4899979, 95.69000244, 9.210000038,
30.03000069, 4.010000229, 4.949999809, 83.83000183, 80.19999695,
31.62000084, 110.2300034, 4.889999866, 93.91000366, 56.91999817,
6.400000095, 20.76000023, 45.81999969, 163.9900055, 44.61000061,
90.98000336, 33.29999924, 9.079999924, 3.730000019, 79.45999908,
46.09999847, 43.70999908, 39.90000153, 6.769999981, 6.690000057,
5.730000019, 123.8099976, 23.86000061, 4.079999924, 39.5, 21.85000038,
96.69000244, 44.25, 8.93999958, 11.47000027, 49.27000046, 91.37999725,
12.98999977, 105.8600006, 12.56000042, 151.6100006, 19.94000053,
NA, 9.520000458, 4.71999979, 94.59999847, 129.8999939, 8.5, 28.04000092,
199.6399994, 6.849999905, 97.87999725, 16.95999908, 23.54999924,
NA, 52.43000031, 19.60000038, 12.39999962, 46.31000137, 150.2299957,
14.13000011, 61.52000046, NA, 69.44999695, 6.139999866, 32.08000183,
7.300000191, 36.22999954, 205.1699982, 172.3699951, 4.639999866,
34.79000092, 45.15000153, NA, 90.91000366, 22.34000015, 90.08000183,
26.45000076, 36.41999817, 36.63000107, 8.770000458, 6.639999866,
183.9799957, 79.04000092, 12.32999992, 19.40999985, 19.03000069,
142.6300049, NA, 16.13999939, 23.86000061, NA, 67.91999817, 20.27000046,
115.0800018, 7.21999979, 17.17000008, 184.1300049, 3.680000067,
9.020000458, 17.10000038, 4.900000095, 137.2100067, 42.95999908,
74.22000122, 5.260000229, 101.0999985, 42.54000092, 106.4199982,
4.489999771, 5.639999866, 16.70999908, 73.68000031, 12.68999958,
109.0500031, 21.54000092, 32.61999893, 5.940000057, 24.13999939,
37.29999924, 61.74000168, NA, 134.8099976, 18.44000053, 17.59000015,
40.22000122, 6.190000057, 115.1299973, 8.050000191, 161.7100067,
15.60999966, 54.25, 21.29999924, 23.29999924, 85.33999634, NA,
133.4700012)), .Names = c("Country.Name", "Country.Region", "Under.5.Mortality.Rate"
), class = "data.frame", row.names = c(NA, -194L))