Ultimate optimization caveat: Do not pre-maturely optimize. Any time you attempt to optimize code, profile it to ensure it needs optimization, and profile the optimization on the same kind of data you intend it to be optimized for to confirm it is a speedup. Almost all code does not need optimization, just to give the correct answer.
If you are optimizing for small x-y and large a-b:
Create an array with length that is the lowest common multiple out of all the x, x+1, x+2... y. For example, for 2, 3, 4, 5 it would be 60, not 120.
Now populate this array with booleans - false initially for every cell, then for each number in x-y, populate all entries in the array that are multiples of that number with true.
Now for each number in a-b, index into the array modulo arraylength and if it is true, skip else if it is false, return.
You can do this a little quicker by removing from you x to y factors numbers whos prime factor expansions are strict supersets of other numbers' prime factor expansions. By which I mean - if you have 2, 3, 4, 5, 4 is 2*2 a strict superset of 2 so you can remove it and now our array length is only 30. For something like 3, 4, 5, 6 however, 4 is 2*2 and 6 is 3*2 - 6 is a superset of 3 so we remove it, but 4 is not a superset of everything so we keep it in. LCM is 3*2*2*5 = 60. Doing this kind of thing would give some speed up on its own for large a-b, and you might not need to go the array direction if that's all you need.
Also, keep in mind that if you aren't going to use the entire result of the function every single time - like, maybe sometimes you're only interested in the lowest value - write it as a generator rather than as a function. That way you can call it until you have enough numbers and then stop, saving time.