All of my quotes come from the C standard, section 6.3.1.3. Unsigned to signed is well defined when the value is within range of the signed type:
1 When a value with integer type is converted to another integer type
other than _Bool, if the value can be represented by the new type, it
is unchanged.
Signed to unsigned is well defined:
2 Otherwise, if the new type is unsigned, the value is converted by
repeatedly adding or subtracting one more than the maximum value that
can be represented in the new type until the value is in the range of
the new type.
Unsigned to signed, when the value lies out of range isn't too well defined:
3 Otherwise, the new type is signed and the value cannot be
represented in it; either the result is implementation-defined or an
implementation-defined signal is raised.
Unfortunately, your question lies in the realm of point 3. C doesn't guarantee any implicit mechanism to convert out-of-range values, so you'll need to explicitly provide one. The first step is to decide which representation you intend to use: Ones' complement, two's complement or sign and magnitude
The representation you use will affect the translation algorithm you use. In the example below, I'll use two's complement: If the sign bit is 1 and the value bits are all 0, this corresponds to your lowest value. Your lowest value is another choice you must make: In the case of two's complement, it'd make sense to use either of INT16_MIN
(-32768) or INT8_MIN
(-128). In the case of the other two, it'd make sense to use INT16_MIN - 1
or INT8_MIN - 1
due to the presense of negative zeros, which should probably be translated to be indistinguishable from regular zeros. In this example, I'll use INT8_MIN
, since it makes sense that (uint8_t) -1
should translate to -1 as an int16_t
.
Separate the sign bit from the value bits. The value
should be the absolute value, except in the case of a two's complement minimum value when sign
will be 1 and the value
will be 0. Of course, the sign bit can be where-ever you like it to be, though it's conventional for it to rest at the far left hand side. Hence, shifting right 7 places obtains the conventional "sign" bit:
uint8_t sign = input >> 7;
uint8_t value = input & (UINT8_MAX >> 1);
int16_t result;
If the sign bit is 1, we'll call this a negative number and add to INT8_MIN to construct the sign so we don't end up in the same conundrum we started with, or worse: undefined behaviour (which is the fate of one of the other answers).
if (sign == 1) {
result = INT8_MIN + value;
}
else {
result = value;
}
This can be shortened to:
int16_t result = (input >> 7) ? INT8_MIN + (input & (UINT8_MAX >> 1)) : input;
... or, better yet:
int16_t result = input <= INT8_MAX ? input
: INT8_MIN + (int8_t)(input % (uint8_t) INT8_MIN);
The sign test now involves checking if it's in the positive range. If it is, the value remains unchanged. Otherwise, we use addition and modulo to produce the correct negative value. This is fairly consistent with the C standard's language above. It works well for two's complement, because int16_t
and int8_t
are guaranteed to use a two's complement representation internally. However, types like int
aren't required to use a two's complement representation internally. When converting unsigned int
to int
for example, there needs to be another check, so that we're treating values less than or equal to INT_MAX as positive, and values greater than or equal to (unsigned int) INT_MIN as negative. Any other values need to be handled as errors; In this case I treat them as zeros.
/* Generate some random input */
srand(time(NULL));
unsigned int input = rand();
for (unsigned int x = UINT_MAX / ((unsigned int) RAND_MAX + 1); x > 1; x--) {
input *= (unsigned int) RAND_MAX + 1;
input += rand();
}
int result = /* Handle positives: */ input <= INT_MAX ? input
: /* Handle negatives: */ input >= (unsigned int) INT_MIN ? INT_MIN + (int)(input % (unsigned int) INT_MIN)
: /* Handle errors: */ 0;