again my question is related to white noise ,but with different meaning.let us compare following two code.first
function [ x ] = generate(N,m,A3)
f1 = 100;
f2 = 200;
T = 1./f1;
t = (0:(N*T/m):(N*T))'; %'
wn = rand(length(t),1).*2 - 1;
x = 20.*sin(2.*pi.*f1.*t) + 30.*cos(2.*pi.*f2.*t) + A3.*wn;
%[pks,locs] = findpeaks(x);
plot(x)
end
using generate(3,500,10)
graph of this code is following
but let us change our code so that it makes zero mean with white noise
function [ x ] = generate1(N,m,A3)
f1 = 100;
f2 = 200;
T = 1./f1;
t = (0:(N*T/m):(N*T))'; %'
wn = rand(length(t),1).*2 - 1;
mn=wn-mean(wn);
x = 20.*sin(2.*pi.*f1.*t) + 30.*cos(2.*pi.*f2.*t) + A3.*mn;
%[pks,locs] = findpeaks(x);
plot(x)
end
and graph is following
if we compare these two picture,we could say that it is almost same,just some changes,so does matter if we make zero mean or not?for real analysis,like for finding peaks and so on.thanks very much
UPDATED: there is updated code
function [ x ] = generate1(N,m,A3)
f1 = 100;
f2 = 200;
T = 1./f1;
t = (0:(N*T/m):(N*T))'; %'
wn = randn(length(t),1); %zero mean variance 1
x = 20.*sin(2.*pi.*f1.*t) + 30.*cos(2.*pi.*f2.*t) + A3.*wn;
%[pks,locs] = findpeaks(x);
plot(x)
end
and it's picture