I know this may be a duplicate, but it seems like a variation on the 'Closest pair of Points' algorithm.
Given a Set of N points (x, y) in the unit square and a distance d, find all pair of points such that the distance between them is at most d.
For large N the brute force method is not an option. Besides the 'sweep line' and 'divide and conquer' methods, is there a simpler solution? These pair of points are the edges of an undirected graph, that i need to traverse it and say if it's connected or not (which i already did using DFS, but when N = 1 million it never finishes!).
Any pseudocode, comments or ideas are welcome, Thanks!
EDIT: I found this on Sedgewick book (i'm looking at the code right now):
Program 3.18 uses a two-dimensional array of linked lists to improve the running time of Program 3.7 by a factor of about 1/d2 when N is sufficiently large. It divides the unit square up into a grid of equal-sized smaller squares. Then, for each square, it builds a linked list of all the points that fall into that square. The two-dimensional array provides the capability to access immediately the set of points close to a given point; the linked lists provide the flexibility to store the points where they may fall without our having to know ahead of time how many points fall into each grid square.