I'm working on a demo that requires a lot of vector math, and in profiling, I've found that it spends the most time finding the distances between given vectors.
Right now, it loops through an array of X^2 vectors, and finds the distance between each one, meaning it runs the distance function X^4 times, even though (I think) there are only (X^2)/2 unique distances.
It works something like this: (pseudo c)
#define MATRIX_WIDTH 8
typedef float vec2_t[2];
vec2_t matrix[MATRIX_WIDTH * MATRIX_WIDTH];
...
for(int i = 0; i < MATRIX_WIDTH; i++)
{
for(int j = 0; j < MATRIX_WIDTH; j++)
{
float xd, yd;
float distance;
for(int k = 0; k < MATRIX_WIDTH; k++)
{
for(int l = 0; l < MATRIX_WIDTH; l++)
{
int index_a = (i * MATRIX_LENGTH) + j;
int index_b = (k * MATRIX_LENGTH) + l;
xd = matrix[index_a][0] - matrix[index_b][0];
yd = matrix[index_a][1] - matrix[index_b][1];
distance = sqrtf(powf(xd, 2) + powf(yd, 2));
}
}
// More code that uses the distances between each vector
}
}
What I'd like to do is create and populate an array of (X^2) / 2 distances without redundancy, then reference that array when I finally need it. However, I'm drawing a blank on how to index this array in a way that would work. A hash table would do it, but I think it's much too complicated and slow for a problem that seems like it could be solved by a clever indexing method.
EDIT: This is for a flocking simulation.