"Decimals" (fractional bits) in other bases are surprisingly unintuitive considering they work in exactly the same way as integers.
base 10
scinot 10e2 10e1 10e0 10e-1 10e-2 10e-3
weight 100.0 10.0 1.0 0.1 0.01 0.001
value 0 4 5 .2 5 0
base 2
scinot 2e6 2e5 2e4 2e3 2e2 2e1 2e0 2e-1 2e-2 2e-3
weight 64 32 16 8 4 2 1 .5 .25 .125
value 0 1 0 1 1 0 1 .0 1 0
If we start with 45.25, that's bigger/equal than 32, so we add a binary 1, and subtract 32.
We're left with 13.25, which is smaller than 16, so we add a binary 0.
We're left with 13.25, which is bigger/equal than 8, so we add a binary 1, and subtract 8.
We're left with 05.25, which is bigger/equal than 4, so we add a binary 1, and subtract 4.
We're left with 01.25, which is smaller than 2, so we add a binary 0.
We're left with 01.25, which is bigger/equal than 1, so we add a binary 1, and subtract 1.
With integers, we'd have zero left, so we stop. But:
We're left with 00.25, which is smaller than 0.5, so we add a binary 0.
We're left with 00.25, which is bigger/equal to 0.25, so we add a binary 1, and subtract 0.25.
Now we have zero, so we stop (or not, you can keep going and calculating zeros forever if you want)
Note that not all "easy" numbers in decimal always reach that zero stopping point. 0.1 (decimal) converted into base 2, is infinitely repeating: 0.0001100110011001100110011... However, all "easy" numbers in binary will always convert nicely into base 10.
You can also do this same process with fractional (2.5), irrational (pi), or even imaginary(2i) bases, except the base cannot be between -1 and 1 inclusive .