You need some template meta-programming machinery to achieve that.
The easiest way to realize the argument dispatch is to exploit pack expansion on expressions which contain a packed compile-time sequence of integers. The template machinery is needed to build such a sequence (also see the remark at the end of this answer for more information on a proposal to standardize such a sequence).
Supposing to have a class (template) index_range
that encapsulates a compile-time range of integers [M, N) and a class (template) index_list
that encapsulates a compile-time list of integers, this is how you would use them:
template<typename T, typename... Args>
struct foo
{
tuple<Args...> args;
// Allows deducing an index list argument pack
template<size_t... Is>
T gen(index_list<Is...> const&)
{
return T(get<Is>(args)...); // This is the core of the mechanism
}
T gen()
{
return gen(
index_range<0, sizeof...(Args)>() // Builds an index list
);
}
};
And here is a possible implementation of index_range
and index_list
:
//===============================================================================
// META-FUNCTIONS FOR CREATING INDEX LISTS
// The structure that encapsulates index lists
template <size_t... Is>
struct index_list
{
};
// Collects internal details for generating index ranges [MIN, MAX)
namespace detail
{
// Declare primary template for index range builder
template <size_t MIN, size_t N, size_t... Is>
struct range_builder;
// Base step
template <size_t MIN, size_t... Is>
struct range_builder<MIN, MIN, Is...>
{
typedef index_list<Is...> type;
};
// Induction step
template <size_t MIN, size_t N, size_t... Is>
struct range_builder : public range_builder<MIN, N - 1, N - 1, Is...>
{
};
}
// Meta-function that returns a [MIN, MAX) index range
template<unsigned MIN, unsigned MAX>
using index_range = typename detail::range_builder<MIN, MAX>::type;
Also notice, that an interesting proposal by Jonathan Wakely exists to standardize an int_seq
class template, which is something very similar to what I called index_list
here.