The first idea that comes to mind is to use SFINAE and try std::hash<>
if possible and otherwise use boost::hash_value()
, like this:
#include <string>
#include <functional>
#include <type_traits>
#include <boost/functional/hash.hpp>
struct my_struct_0 {
std::string s;
};
template <typename T>
struct has_std_hash_subst { typedef void type; };
template <typename T, typename C = void>
struct has_std_hash : std::false_type {};
template <typename T>
struct has_std_hash<
T,
typename has_std_hash_subst<decltype( std::hash<T>()(T()) ) >::type
> : std::true_type {};
template <typename T>
static typename std::enable_if<has_std_hash<T>::value, size_t>::type
make_hash(const T &v)
{
return std::hash<T>()(v);
}
template <typename T>
static typename std::enable_if<(!has_std_hash<T>::value), size_t>::type
make_hash(const T &v)
{
return boost::hash_value(v);
}
int main()
{
make_hash(std::string("Hello, World!"));
make_hash(my_struct_0({ "Hello, World!" }));
}
Unfortunately, there is always a default specialization of std::hash
that triggers static_assert
failure. This may not be the case with other libraries but it is the case with GCC 4.7.2 (see bits/functional_hash.h:60
):
/// Primary class template hash.
template<typename _Tp>
struct hash : public __hash_base<size_t, _Tp>
{
static_assert(sizeof(_Tp) < 0,
"std::hash is not specialized for this type");
size_t operator()(const _Tp&) const noexcept;
};
So the above SFINAE approach doesn't work — static_assert
in there is a show-stopper. Therefore, you cannot really determine when std::hash
is available.
Now, this does not really answer your question but might come handy — it is possible to do this trick the other way around — check for Boost implementation first and only then fall back to std::hash<>
. Consider the below example that uses boost::hash_value()
if it is available (i.e. for std::string
and my_struct_0
) and otherwise uses std::hash<>
(i.e. for my_struct_1
):
#include <string>
#include <functional>
#include <type_traits>
#include <boost/functional/hash.hpp>
struct my_struct_0 {
std::string s;
};
struct my_struct_1 {
std::string s;
};
namespace boost {
size_t hash_value(const my_struct_0 &v) {
return boost::hash_value(v.s);
}
}
namespace std {
template <>
struct hash<my_struct_1> {
size_t operator()(const my_struct_1 &v) const {
return std::hash<std::string>()(v.s);
}
};
}
template <typename T>
struct has_boost_hash_subst { typedef void type; };
template <typename T, typename C = void>
struct has_boost_hash : std::false_type {};
template <typename T>
struct has_boost_hash<
T,
typename has_boost_hash_subst<decltype(boost::hash_value(T()))>::type
> : std::true_type {};
template <typename T>
static typename std::enable_if<has_boost_hash<T>::value, size_t>::type
make_hash(const T &v)
{
size_t ret = boost::hash_value(v);
std::cout << "boost::hash_value(" << typeid(T).name()
<< ") = " << ret << '\n';
return ret;
}
template <typename T>
static typename std::enable_if<(!has_boost_hash<T>::value), size_t>::type
make_hash(const T &v)
{
size_t ret = std::hash<T>()(v);
std::cout << "std::hash(" << typeid(T).name()
<< ") = " << ret << '\n';
return ret;
}
int main()
{
make_hash(std::string("Hello, World!"));
make_hash(my_struct_0({ "Hello, World!" }));
make_hash(my_struct_1({ "Hello, World!" }));
}
Hope it helps.
UPDATE: Perhaps you could use the hack described here as pointed out by @ChristianRau and make the first SFINAE approach work! Though it is very dirty :)