I'm assuming you don't have an expression for f,g,h, but you want the derivative of the composition in terms of derivatives of f,g,h.
You could always reduce the problem to single-valued functions, by using a definition like f[x_,y_] := {f1[x,y],f2[x,y],f3[x,y]}
For example:
f[x_, y_] := Through[{f1, f2, f3}[{x, y}]]
g[x_, y_, z_] := Through[{g1, g2, g3}[{x, y, z}]]
D[h @@ g @@ f[x, y], x]
Result:
(Derivative[{1, 0}][f3][{x, y}]*Derivative[{0, 0, 1}][g3][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f2][{x, y}]*Derivative[{0, 1, 0}][g3][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f1][{x, y}]*Derivative[{1, 0, 0}][g3][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}])*
Derivative[0, 0, 1][h][g1[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}], g2[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}],
g3[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}]] +
(Derivative[{1, 0}][f3][{x, y}]*Derivative[{0, 0, 1}][g2][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f2][{x, y}]*Derivative[{0, 1, 0}][g2][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f1][{x, y}]*Derivative[{1, 0, 0}][g2][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}])*
Derivative[0, 1, 0][h][g1[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}], g2[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}],
g3[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}]] +
(Derivative[{1, 0}][f3][{x, y}]*Derivative[{0, 0, 1}][g1][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f2][{x, y}]*Derivative[{0, 1, 0}][g1][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}] +
Derivative[{1, 0}][f1][{x, y}]*Derivative[{1, 0, 0}][g1][{f1[{x, y}], f2[{x, y}], f3[{x, y}]}])*
Derivative[1, 0, 0][h][g1[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}], g2[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}],
g3[{f1[{x, y}], f2[{x, y}], f3[{x, y}]}]]