Again I have a question concerning large loops.
Suppose I have a function
limits
def limits(a,b):
*evaluate integral with upper and lower limits a and b*
return float result
A and B are simple np.arrays that store my values a and b. Now I want to calculate the integral 300'000^2/2 times because A and B are of the length of 300'000 each and the integral is symmetrical.
In Python I tried several ways like itertools.combinations_with_replacement
to create the combinations of A and B and then put them into the integral but that takes huge amount of time and the memory is totally overloaded.
Is there any way, for example transferring the loop in another language, to speed this up?
I would like to run the loop
for i in range(len(A)):
for j in range(len(B)):
np.histogram(limits(A[i],B[j]))
I think histrogramming the return of limits
is desirable in order not to store additional arrays that grow squarely.
From what I read python is not really the best choice for this iterative ansatzes.
So would it be reasonable to evaluate this loop in another language within Python, if yes, How to do it. I know there are ways to transfer code, but I have never done it so far.
Thanks for your help.