I am trying to write a basic function to add some lines of best fit to plots using nls
.
This works fine unless the data just happens to be defined exactly by the formula passed to nls
. I'm aware of the issues and that this is documented behaviour as reported here.
My question though is how can I get around this and force a line of best fit to be plotted regardless of the data exactly being described by the model? Is there a way to detect the data matches exactly and plot the perfectly fitting curve? My current dodgy solution is:
#test data
x <- 1:10
y <- x^2
plot(x, y, pch=20)
# polynomial line of best fit
f <- function(x,a,b,d) {(a*x^2) + (b*x) + d}
fit <- nls(y ~ f(x,a,b,d), start = c(a=1, b=1, d=1))
co <- coef(fit)
curve(f(x, a=co[1], b=co[2], d=co[3]), add = TRUE, col="red", lwd=2)
Which fails with the error:
Error in nls(y ~ f(x, a, b, d), start = c(a = 1, b = 1, d = 1)) :
singular gradient
The easy fix I apply is to jitter
the data slightly, but this seems a bit destructive and hackish.
# the above code works after doing...
y <- jitter(x^2)
Is there a better way?