Perhaps a combination of which()
and %in%
would help you:
dat[which(rownames(dat) %in% c("row.name13")) + c(-1, 1), ]
# col1 col2 col3 col4
# row.name12 A 29 x y
# row.name14 A 77 x y
In the above, we are trying to identify which row names in "dat" are "row.name13" (using which()
), and the + c(-1, 1)
tells R to return the row before and the row after. If you wanted to include the row, you could do something like + c(-1:1)
.
To get the range of rows, switch the comma to a colon:
dat[which(rownames(dat) %in% c("row.name13")) + c(-1:1), ]
# col1 col2 col3 col4
# row.name12 A 29 x y
# row.name13 B 17 x y
# row.name14 A 77 x y
Update
Matching a list is a little bit trickier, but without thinking about it too much, here is a possibility:
myRows <- c("row.name12", "row.name13")
rowRanges <- lapply(which(rownames(dat) %in% myRows), function(x) x + c(-1:1))
# [[1]]
# [1] 1 2 3
#
# [[2]]
# [1] 2 3 4
#
lapply(rowRanges, function(x) dat[x, ])
# [[1]]
# col1 col2 col3 col4
# row.name11 A 23 x y
# row.name12 A 29 x y
# row.name13 B 17 x y
#
# [[2]]
# col1 col2 col3 col4
# row.name12 A 29 x y
# row.name13 B 17 x y
# row.name14 A 77 x y
This outputs a list
of data.frame
s which might be handy since you might have duplicated rows (as there are in this example).
Update 2: Using grep
if it is more appropriate
Here is a variation of your question, one which would be less convenient to solve using the which()
...%in%
approach.
set.seed(1)
dat1 <- data.frame(ID = 1:25, V1 = sample(100, 25, replace = TRUE))
rownames(dat1) <- paste("rowname", sample(apply(combn(LETTERS[1:4], 2),
2, paste, collapse = ""),
25, replace = TRUE),
sprintf("%02d", 1:25), sep = ".")
head(dat1)
# ID V1
# rowname.AD.01 1 27
# rowname.AB.02 2 38
# rowname.AD.03 3 58
# rowname.CD.04 4 91
# rowname.AD.05 5 21
# rowname.AD.06 6 90
Now, imagine you wanted to identify the rows with AB
and AC
, but you don't have a list of the numeric suffixes.
Here's a little function that can be used in such a scenario. It borrows a little from @Spacedman to make sure that the rows returned are within the range of the data (as per @flodel's suggestion).
getMyRows <- function(data, matches, range) {
rowMatches = lapply(unlist(lapply(matches, function(x)
grep(x, rownames(data)))), function(y) y + range)
rowMatches = lapply(rowMatches, function(x) x[x > 0 & x <= nrow(data)])
lapply(rowMatches, function(x) data[x, ])
}
You can use it as follows (but I won't print the results here). First, specify the dataset, then the pattern(s) you want matched, then the range (in this example, three rows before and four rows after).
getMyRows(dat1, c("AB", "AC"), -3:4)
Applying it to the earlier example of matching row.name12
and row.name13
, you can use it as follows: getMyRows(dat, c(12, 13), -1:1)
.
You can also modify the function to make it more general (for example, to specify matching with a column instead of row names).