A device driver is not a "program" that has a main {}
with a start point and exit point. It's more like an API or a library or a collection of routines. In this case, it's a set of entry points declared by MODULE_INIT()
, MODULE_EXIT()
, perhaps EXPORT_SYMBOL()
and structures that list entry points for operations.
For block devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/blkdev.h
):
struct block_device_operations {
int (*open) ();
int (*release) ();
int (*ioctl) ();
int (*compat_ioctl) ();
int (*direct_access) ();
unsigned int (*check_events) ();
/* ->media_changed() is DEPRECATED, use ->check_events() instead */
int (*media_changed) ();
void (*unlock_native_capacity) ();
int (*revalidate_disk) ();
int (*getgeo)();
/* this callback is with swap_lock and sometimes page table lock held */
void (*swap_slot_free_notify) ();
struct module *owner;
};
For char devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/fs.h
):
struct file_operations {
struct module *owner;
loff_t (*llseek) ();
ssize_t (*read) ();
ssize_t (*write) ();
ssize_t (*aio_read) ();
ssize_t (*aio_write) ();
int (*readdir) ();
unsigned int (*poll) ();
long (*unlocked_ioctl) ();
long (*compat_ioctl) ();
int (*mmap) ();
int (*open) ();
int (*flush) ();
int (*release) ();
int (*fsync) ();
int (*aio_fsync) ();
int (*fasync) ();
int (*lock) ();
ssize_t (*sendpage) ();
unsigned long (*get_unmapped_area)();
int (*check_flags)();
int (*flock) ();
ssize_t (*splice_write)();
ssize_t (*splice_read)();
int (*setlease)();
long (*fallocate)();
};
For platform devices, the driver is expected to provide the list of operations it can perform by declaring its functions for those operations in (from include/linux/platform_device.h
):
struct platform_driver {
int (*probe)();
int (*remove)();
void (*shutdown)();
int (*suspend)();
int (*resume)();
struct device_driver driver;
const struct platform_device_id *id_table;
};
The driver, especially char drivers, does not have to support every operation listed. Note that there are macros to facilitate the coding of these structures by naming the structure entries.
Does the driver program starts at the MOUDLUE_INIT() macro?
The driver's init() routine specified in MODULE_INIT()
will be called during boot (when statically linked in) or when the module is dynamically loaded. The driver passes its structure of operations to the device's subsystem when it registers itself during its init().
These device driver entry points, e.g. open() or read(), are typically executed when the user app invokes a C library call (in user space) and after a switch to kernel space. Note that the i2c driver you're looking at is a platform driver for a bus that is used by leaf devices, and its functions exposed by EXPORT_SYMBOL()
would be called by other drivers.
Only the driver's init() routine specified in MODULE_INIT()
is guaranteed to be called. The driver's exit() routine specified in MODULE_EXIT()
would only be executed if/when the module is dynamically unloaded. The driver's op routines will be called asynchronously (just like its interrupt service routine) in unknown order. Hopefully user programs will invoke an open() before issuing a read() or an ioctl() operation, and invoke other operations in a sensible fashion. A well-written and robust driver should accommodate any order or sequence of operations, and produce sane results to ensure system integrity.