Here goes a solution that uses Prolog's unification capabilities and attributed variables to match templates:
:-dynamic pattern_i/3.
test:-
retractall(pattern_i(_,_,_)),
add_pattern(abab),
add_pattern(bcbc),
add_pattern(babcbc),
add_pattern(dababd),
show_similarities.
show_similarities:-
call(pattern_i(Word, Pattern, Maps)),
match_pattern(Word, Pattern, Maps),
fail.
show_similarities.
match_pattern(Word, Pattern, Maps):-
all_dif(Maps), % all variables should be unique
call(pattern_i(MWord, MPattern, MMaps)),
Word\=MWord,
all_dif(MMaps),
append([_, Pattern, _], MPattern), % Matches patterns
writeln(words(Word, MWord)),
write('mapping: '),
match_pattern1(Maps, MMaps). % Prints mappings
match_pattern1([], _):-
nl,nl.
match_pattern1([Char-Char|Maps], MMaps):-
select(MChar-Char, MMaps, NMMaps),
write(Char), write('='), write(MChar), write(' '),
!,
match_pattern1(Maps, NMMaps).
add_pattern(Word):-
word_to_pattern(Word, Pattern, Maps),
assertz(pattern_i(Word, Pattern, Maps)).
word_to_pattern(Word, Pattern, Maps):-
atom_chars(Word, Chars),
chars_to_pattern(Chars, [], Pattern, Maps).
chars_to_pattern([], Maps, [], RMaps):-
reverse(Maps, RMaps).
chars_to_pattern([Char|Tail], Maps, [PChar|Pattern], NMaps):-
member(Char-PChar, Maps),
!,
chars_to_pattern(Tail, Maps, Pattern, NMaps).
chars_to_pattern([Char|Tail], Maps, [PChar|Pattern], NMaps):-
chars_to_pattern(Tail, [Char-PChar|Maps], Pattern, NMaps).
all_dif([]).
all_dif([_-Var|Maps]):-
all_dif(Var, Maps),
all_dif(Maps).
all_dif(_, []).
all_dif(Var, [_-MVar|Maps]):-
dif(Var, MVar),
all_dif(Var, Maps).
The idea of the algorithm is:
- For each word generate a list of unbound variables, where we use the same variable for the same char in the word. e.g: for the word abcbc the list would look something like [X,Y,Z,Y,Z]. This defines the template for this word
- Once we have the list of templates we take each one and try to unify the template with a subtemplate of every other word. So for example if we have the words abcbc and zxzx, the templates would be [X,Y,Z,Y,Z] and [H,G,H,G]. Then there is a subtemplate on the first template which unifies with the template of the second word (H=Y, G=Z)
- For each template match we show the substitutions needed (variable renamings) to yield that match. So in our example the substitutions would be z=b, x=c
Output for test (words abab, bcbc, babcbc, dababd):
?- test.
words(abab,bcbc)
mapping: a=b b=c
words(abab,babcbc)
mapping: a=b b=c
words(abab,dababd)
mapping: a=a b=b
words(bcbc,abab)
mapping: b=a c=b
words(bcbc,babcbc)
mapping: b=b c=c
words(bcbc,dababd)
mapping: b=a c=b