I'm writing a programming language interpreter.
I have need of the right code idiom to both evaluate a sequence of expressions to get a sequence of their values, and propagate state from one evaluator to the next to the next as the evaluations take place. I'd like a functional programming idiom for this.
It's not a fold because the results come out like a map. It's not a map because of the state prop across.
What I have is this code which I'm using to try to figure this out. Bear with a few lines of test rig first:
// test rig
class MonadLearning extends JUnit3Suite {
val d = List("1", "2", "3") // some expressions to evaluate.
type ResType = Int
case class State(i : ResType) // trivial state for experiment purposes
val initialState = State(0)
// my stub/dummy "eval" function...obviously the real one will be...real.
def computeResultAndNewState(s : String, st : State) : (ResType, State) = {
val State(i) = st
val res = s.toInt + i
val newStateInt = i + 1
(res, State(newStateInt))
}
My current solution. Uses a var which is updated as the body of the map is evaluated:
def testTheVarWay() {
var state = initialState
val r = d.map {
s =>
{
val (result, newState) = computeResultAndNewState(s, state)
state = newState
result
}
}
println(r)
println(state)
}
I have what I consider unacceptable solutions using foldLeft which does what I call "bag it as you fold" idiom:
def testTheFoldWay() {
// This startFold thing, requires explicit type. That alone makes it muddy.
val startFold : (List[ResType], State) = (Nil, initialState)
val (r, state) = d.foldLeft(startFold) {
case ((tail, st), s) => {
val (r, ns) = computeResultAndNewState(s, st)
(tail :+ r, ns) // we want a constant-time append here, not O(N). Or could Cons on front and reverse later
}
}
println(r)
println(state)
}
I also have a couple of recursive variations (which are obvious, but also not clear or well motivated), one using streams which is almost tolerable:
def testTheStreamsWay() {
lazy val states = initialState #:: resultStates // there are states
lazy val args = d.toStream // there are arguments
lazy val argPairs = args zip states // put them together
lazy val resPairs : Stream[(ResType, State)] = argPairs.map{ case (d1, s1) => computeResultAndNewState(d1, s1) } // map across them
lazy val (results , resultStates) = myUnzip(resPairs)// Note .unzip causes infinite loop. Had to write my own.
lazy val r = results.toList
lazy val finalState = resultStates.last
println(r)
println(finalState)
}
But, I can't figure out anything as compact or clear as the original 'var' solution above, which I'm willing to live with, but I think somebody who eats/drinks/sleeps monad idioms is going to just say ... use this... (Hopefully!)