You are running into either a problem with MATLAB's deconvolution algorithm, or floating point precision problems (or maybe both). I suspect it's floating point precision due to all the divisions and subtractions that take place during the deconvolution, but it might be worth contacting MathWorks directly to ask what they think.
Per MATLAB documentation, if [q,r] = deconv(v,u)
, then v = conv(u,q)+r
must also hold (i.e., the output of deconv
should always satisfy this). In your case this is violently violated. Put the following at the end of your script:
[reconSpike1 rem]=deconv(calcium1, k1);
max(conv(k1, reconSpike1) + rem - calcium1)
I get 6.75e227, which is not zero ;-) Next try changing the length of spike
to 6000; you will get a small number (~1e-15). Gradually increase the length of spike
; the error will get larger and larger. Note that if you put only one non-zero element into your spike, this behavior doesn't happen: the error is always zero. It makes sense; all MATLAB needs to do is divide everything by the same number.
Here's a simple demonstration using random vectors:
v = random('uniform', 1,2,100,1);
u = random('uniform', 1,2,100,1);
[q r] = deconv(v,u);
fprintf('maximum error for length(v) = 100 is %f\n', max(conv(u, q) + r - v))
v = random('uniform', 1,2,1000,1);
[q r] = deconv(v,u);
fprintf('maximum error for length(v) = 1000 is %f\n', max(conv(u, q) + r - v))
The output is:
maximum error for length(v) = 100 is 0.000000
maximum error for length(v) = 1000 is 14.910770
I don't know what you are really trying to accomplish, so it's hard to give further advice. But I'll just point out that if you have a problem where pulses are piling up and you want to extract information about each pulse, this can be a tricky problem. I know some people who work on things like this, so if you want some references let me know and I will ask them.