Currently, I am having problems with the Backpropagation algorithm. I am trying to implement it and use it to recognize the direction of faces (left, right, down, straight). Basically, I have N images, read the pixels and change its values(0 to 255) to values from 0.0 to 1.0. All images are 32*30. I have an input layer of 960 neurons, a hidden layer of 3 neurons and an output layer of 4 neurons. For example, the output <0.1,0.9,0.1,0.1> means that the person looks to the right. I followed the pseudy-code. However, it doesn't work right - it does not compute the correct weights and consequently it can't handle the training and test examples. Here are parts of the code:
// main function - it runs the algorithm
private void runBackpropagationAlgorithm() {
for (int i = 0; i < 900; ++i) {
for (ImageUnit iu : images) {
double [] error = calcOutputError(iu.getRatioMatrix(), iu.getClassification());
changeHiddenUnitsOutWeights(error);
error = calcHiddenError(error);
changeHiddenUnitsInWeights(error,iu.getRatioMatrix());
}
}
}
// it creates the neural network
private void createNeuroneNetwork() {
Random generator = new Random();
for (int i = 0; i < inHiddenUnitsWeights.length; ++i) {
for (int j = 0; j < hiddenUnits; ++j) {
inHiddenUnitsWeights[i][j] = generator.nextDouble();
}
}
for (int i = 0; i < hiddenUnits; ++i) {
for (int j = 0; j < 4; ++j) {
outHddenUnitsWeights[i][j] = generator.nextDouble();
}
}
}
// Calculates the error in the network. It runs through the whole network.
private double [] calcOutputError(double[][] input, double [] expectedOutput) {
int currentEdge = 0;
Arrays.fill(hiddenUnitNodeValue, 0.0);
for (int i = 0; i < input.length; ++i) {
for (int j = 0; j < input[0].length; ++j) {
for (int k = 0; k < hiddenUnits; ++k) {
hiddenUnitNodeValue[k] += input[i][j] * inHiddenUnitsWeights[currentEdge][k];
}
++currentEdge;
}
}
double[] out = new double[4];
for (int j = 0; j < 4; ++j) {
for (int i = 0; i < hiddenUnits; ++i) {
out[j] += outHddenUnitsWeights[i][j] * hiddenUnitNodeValue[i];
}
}
double [] error = new double [4];
Arrays.fill(error, 4);
for (int i = 0; i < 4; ++i) {
error[i] = ((expectedOutput[i] - out[i])*(1.0-out[i])*out[i]);
//System.out.println((expectedOutput[i] - out[i]) + " " + expectedOutput[i] + " " + out[i]);
}
return error;
}
// Changes the weights of the outgoing edges of the hidden neurons
private void changeHiddenUnitsOutWeights(double [] error) {
for (int i = 0; i < hiddenUnits; ++i) {
for (int j = 0; j < 4; ++j) {
outHddenUnitsWeights[i][j] += learningRate*error[j]*hiddenUnitNodeValue[i];
}
}
}
// goes back to the hidden units to calculate their error.
private double [] calcHiddenError(double [] outputError) {
double [] error = new double[hiddenUnits];
for (int i = 0; i < hiddenUnits; ++i) {
double currentHiddenUnitErrorSum = 0.0;
for (int j = 0; j < 4; ++j) {
currentHiddenUnitErrorSum += outputError[j]*outHddenUnitsWeights[i][j];
}
error[i] = hiddenUnitNodeValue[i] * (1.0 - hiddenUnitNodeValue[i]) * currentHiddenUnitErrorSum;
}
return error;
}
// changes the weights of the incomming edges to the hidden neurons. input is the matrix of ratios
private void changeHiddenUnitsInWeights(double [] error, double[][] input) {
int currentEdge = 0;
for (int i = 0; i < input.length; ++i) {
for (int j = 0; j < input[0].length; ++j) {
for (int k = 0; k < hiddenUnits; ++k) {
inHiddenUnitsWeights[currentEdge][k] += learningRate*error[k]*input[i][j];
}
++currentEdge;
}
}
}
As the algorithm works, it computes bigger and bigger weights, which finally approach infinity (NaN values). I checked the code. Alas, I didn't manage to solve my problem. I will be firmly grateful to anyone who would try to help me.