StackOverflowException is quite different to OutOfMemoryException.
OOME means that there is no memory available to the process at all. This could be upon trying to create a new thread with a new stack, or in trying to create a new object on the heap (and a few other cases).
SOE means that the thread's stack - by default 1M, though it can be set differently in thread creation or if the executable has a different default; hence ASP.NET threads have 256k as a default rather than 1M - was exhausted. This could be upon calling a method, or allocating a local.
When you call a function (method or property), the arguments of the call are placed on the stack, the address the function should return to when it returns are put on the stack, then execution jumps to the function called. Then some locals will be placed on the stack. Some more may be placed on it as the function continues to execute. stackalloc
will also explicitly use some stack space where otherwise heap allocation would be used.
Then it calls another function, and the same happens again. Then that function returns, and execution jumps back to the stored return address, and the pointer within the stack moves back up (no need to clean up the values placed on the stack, they're just ignored now) and that space is available again.
If you use up that 1M of space, you get a StackOverflowException
. Because 1M (or even 256k) is a large amount of memory for these such use (we don't put really large objects in the stack) the three things that are likely to cause an SOE are:
- Someone thought it would be a good idea to optimise by using
stackalloc
when it wasn't, and they used up that 1M fast.
- Someone thought it would be a good idea to optimise by creating a thread with a smaller than usual stack when it wasn't, and they use up that tiny stack.
- A recursive (whether directly or through several steps) call falls into an infinite loop.
- It wasn't quite infinite, but it was large enough.
You've got case 4. 1 and 2 are quite rare (and you need to be quite deliberate to risk them). Case 3 is by far the most common, and indicates a bug in that the recursion shouldn't be infinite, but a mistake means it is.
Ironically, in this case you should be glad you took the recursive approach rather than iterative - the SOE reveals the bug and where it is, while with an iterative approach you'd probably have an infinite loop bringing everything to a halt, and that can be harder to find.
Now for case 4, we've got two options. In the very very rare cases where we've got just slightly too many calls, we can run it on a thread with a larger stack. This doesn't apply to you.
Instead, you need to change from a recursive approach to an iterative one. Most of the time, this isn't very hard thought it can be fiddly. Instead of calling itself again, the method uses a loop. For example, consider the classic teaching-example of a factorial method:
private static int Fac(int n)
{
return n <= 1 ? 1 : n * Fac(n - 1);
}
Instead of using recursion we loop in the same method:
private static int Fac(int n)
{
int ret = 1;
for(int i = 1; i <= n, ++i)
ret *= i;
return ret;
}
You can see why there's less stack space here. The iterative version will also be faster 99% of the time. Now, imagine we accidentally call Fac(n)
in the first, and leave out the ++i
in the second - the equivalent bug in each, and it causes an SOE in the first and a program that never stops in the second.
For the sort of code you're talking about, where you keep producing more and more results as you go based on previous results, you can place the results you've got in a data-structure (Queue<T>
and Stack<T>
both serve well for a lot of cases) so the code becomes something like):
private void MyLoadMethod(string firstConceptCKI)
{
Queue<string> pendingItems = new Queue<string>();
pendingItems.Enqueue(firstConceptCKI);
while(pendingItems.Count != 0)
{
string conceptCKI = pendingItems.Dequeue();
// make some script calls to DB, so that moTargetConceptList2 will have Concept-Relations for the current node.
// when this is zero, it means its a leaf.
int numberofKids = moTargetConceptList2.ConceptReltns.Count();
for (int i = 1; i <= numberofKids; i++)
{
oUCMRConceptReltn = moTargetConceptList2.ConceptReltns.get_ItemByIndex(i, false);
//Get the concept linked to the relation concept
if (oUCMRConceptReltn.SourceCKI == sConceptCKI)
{
oConcept = moTargetConceptList2.ItemByKeyConceptCKI(oUCMRConceptReltn.TargetCKI, false);
}
else
{
oConcept = moTargetConceptList2.ItemByKeyConceptCKI(oUCMRConceptReltn.SourceCKI, false);
}
//builder.AppendLine("\t" + oConcept.PrimaryCTerm.SourceString);
Debug.WriteLine(oConcept.PrimaryCTerm.SourceString);
pendingItems.Enque(oConcept.ConceptCKI);
}
}
}
(I haven't completely checked this, just added the queuing instead of recursing to the code in your question).
This should then do more or less the same as your code, but iteratively. Hopefully that means it'll work. Note that there is a possible infinite loop in this code if the data you are retrieving has a loop. In that case this code will throw an exception when it fills the queue with far too much stuff to cope. You can either debug the source data, or use a HashSet
to avoid enqueuing items that have already been processed.
Edit: Better add how to use a HashSet to catch duplicates. First set up a HashSet, this could just be:
HashSet<string> seen = new HashSet<string>();
Or if the strings are used case-insensitively, you'd be better with:
HashSet<string> seen = new HashSet<string>(StringComparison.InvariantCultureIgnoreCase) // or StringComparison.CurrentCultureIgnoreCase if that's closer to how the string is used in the rest of the code.
Then before you go to use the string (or perhaps before you go to add it to the queue, you have one of the following:
If duplicate strings shouldn't happen:
if(!seen.Add(conceptCKI))
throw new InvalidOperationException("Attempt to use \" + conceptCKI + "\" which was already seen.");
Or if duplicate strings are valid, and we just want to skip performing the second call:
if(!seen.Add(conceptCKI))
continue;//skip rest of loop, and move on to the next one.