All public key algorithms are based on trapdoor functions, that is, mathematical constructs that are "easy" to compute in one way, but "hard" to reverse unless you have also some additional information (used as private key) at which point also the reverse becomes "easy".
"Easy" and "hard" are just qualitative adjectives that are always more formally defined in terms of computational complexity. "Hard" very often refers to computations that cannot be solved in polynomial time O(nx) for some fixed x and where n is the input data.
In the case of RSA, the "easy" function is the modular exponentiation C = Me mod N where the factors of N are kept secret. The "hard" problem is to find the e-th root of C (that is, M). Of course, "hard" does not mean that it is always hard, but (intuitively) that increasing the size of N by a certain factor increases the complexity by a much larger factor.
The sizes of the modulus which are recommended (2048 bits, or 617 decimal digits) relate to the availability of computation power at present time, so that if you stick to them you are assured that it will be extremely expensive for the attacker to break it. For more details, I should refer you to a brilliant answer on cryptography.SE (go and upvote :-)).
Finally, in order to have a trapdoor, N is built so as to be a composite number. It theory, for improved performance, N may have more than 2 factors, but the general security rule is that all factors must be balanced and have roughly the same size. That means that if you have K factors, and N is B bits long, each factor is roughly B/K bits longs.
This problem to solve is not the same as the integer factorization problem though. The two are related in that if you manage to factor N you can compute the private key by re-doing what the party that generated the key did. Typically, the exponent e being used is very small (3); it cannot be excluded that someday somebody devises an algorithm to compute the e-th without factoring N.
EDIT: Corrected the number of decimal digits for the modulus of a 2048 bits RSA key.