I started doing 99 haskell problems and I was on problem 7 and my unittests were blowing up.
Apparently, it's due to this: http://www.haskell.org/haskellwiki/Monomorphism_restriction
I just wanted to make sure I understood this correctly because I'm kinda confused.
situation 1: func a
is defined with no type def or with a non-strict type def and then used once, the compiler has no issues infering the type at compile time.
situation 2: the same func a
is used many times in the program, the compiler can't be 100% sure what the type is unless it recomputes the function for the given arguments.
To avoid the computation loss, ghc complains to the programmer that it needs a strict type def on a
to work correctly.
I think in my situation, assertEqual
has the type def of
assertEqual :: (Eq a, Show a) => String -> a -> a -> Assertion
I was getting an error when test3
was defined that I interpreted as saying that it had 2 possible types for the return of testcase3
(Show and Eq) and didn't know how to continue.
Does that sound correct or am I completely off?
problem7.hs:
-- # Problem 7
-- Flatten a nested list structure.
import Test.HUnit
-- Solution
data NestedList a = Elem a | List [NestedList a]
flatten :: NestedList a -> [a]
flatten (Elem x) = [x]
flatten (List x) = concatMap flatten x
-- Tests
testcase1 = flatten (Elem 5)
assertion1 = [5]
testcase2 = flatten (List [Elem 1, List [Elem 2, List [Elem 3, Elem 4], Elem 5]])
assertion2 = [1,2,3,4,5]
-- This explodes
-- testcase3 = flatten (List [])
-- so does this:
-- testcase3' = flatten (List []) :: Eq a => [a]
-- this does not
testcase3'' = flatten (List []) :: Num a => [a]
-- type def based off `:t assertEqual`
assertEmptyList :: (Eq a, Show a) => String -> [a] -> Assertion
assertEmptyList str xs = assertEqual str xs []
test1 = TestCase $ assertEqual "" testcase1 assertion1
test2 = TestCase $ assertEqual "" testcase2 assertion2
test3 = TestCase $ assertEmptyList "" testcase3''
tests = TestList [test1, test2, test3]
-- Main
main = runTestTT tests
1st situation: testcase3 = flatten (List [])
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main ( problem7.hs, interpreted )
problem7.hs:29:20:
Ambiguous type variable `a0' in the constraints:
(Eq a0)
arising from a use of `assertEmptyList' at problem7.hs:29:20-34
(Show a0)
arising from a use of `assertEmptyList' at problem7.hs:29:20-34
Probable fix: add a type signature that fixes these type variable(s)
In the second argument of `($)', namely
`assertEmptyList "" testcase3'
In the expression: TestCase $ assertEmptyList "" testcase3
In an equation for `test3':
test3 = TestCase $ assertEmptyList "" testcase3
Failed, modules loaded: none.
Prelude>
2nd situation: testcase3 = flatten (List []) :: Eq a => [a]
GHCi, version 7.4.2: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main ( problem7.hs, interpreted )
problem7.hs:22:13:
Ambiguous type variable `a0' in the constraints:
(Eq a0)
arising from an expression type signature at problem7.hs:22:13-44
(Show a0)
arising from a use of `assertEmptyList' at problem7.hs:29:20-34
Possible cause: the monomorphism restriction applied to the following:
testcase3 :: [a0] (bound at problem7.hs:22:1)
Probable fix: give these definition(s) an explicit type signature
or use -XNoMonomorphismRestriction
In the expression: flatten (List []) :: Eq a => [a]
In an equation for `testcase3':
testcase3 = flatten (List []) :: Eq a => [a]
Failed, modules loaded: none.