Considering there will be 2 sides, side 1 and side 2, and N number of people should cross from side 1 to side 2. The logic to cross the bridge by a limit of L number of people would be -
Step 1 : Move L number of the fastest members from side 1 to side 2
Step 2 : Bring back the fastest person back from Side 2 to Side 1
Step 3 : Move L number of slowest members from side 1 to side 2
Step 4 : Bring back the fastest person among the ones present in Side 2
Repeat these steps until you will be left with no one in Side 1, either at the end of step 2 or at the end of step 4.
A code in C# for n number of people, with just 2 persons at a time is here. This will intake N number of people, which can be specified in runtime. It will then accept person name and time taken, for N people. The output also specifies the iteration of the lowest time possible.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace RiverCrossing_Problem
{
class Program
{
static void Main(string[] args)
{
Dictionary<string, int> Side1 = new Dictionary<string, int>();
Dictionary<string, int> Side2 = new Dictionary<string, int>();
Console.WriteLine("Enter number of persons");
int n = Convert.ToInt32(Console.ReadLine());
Console.WriteLine("Enter the name and time taken by each");
for(int a =0; a<n; a++)
{
string tempname = Console.ReadLine();
int temptime = Convert.ToInt32(Console.ReadLine());
Side1.Add(tempname, temptime);
}
Console.WriteLine("Shortest time and logic:");
int totaltime = 0;
int i = 1;
do
{
KeyValuePair<string, int> low1, low2, high1, high2;
if (i % 2 == 1)
{
LowestTwo(Side1, out low1, out low2);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", low1.Key, low2.Key, low2.Value);
Side1.Remove(low2.Key);
Side1.Remove(low1.Key);
Side2.Add(low2.Key, low2.Value);
Side2.Add(low1.Key, low1.Value);
totaltime += low2.Value;
low1 = LowestOne(Side2);
Console.WriteLine("{0} comes back to side 1, time taken = {1}", low1.Key, low1.Value);
totaltime += low1.Value;
Side1.Add(low1.Key, low1.Value);
Side2.Remove(low1.Key);
i++;
}
else
{
HighestTwo(Side1, out high1, out high2);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", high1.Key, high2.Key, high1.Value);
Side1.Remove(high1.Key);
Side1.Remove(high2.Key);
Side2.Add(high1.Key, high1.Value);
Side2.Add(high2.Key, high2.Value);
totaltime += high1.Value;
low1 = LowestOne(Side2);
Console.WriteLine("{0} comes back to side 1, time taken = {1}", low1.Key, low1.Value);
Side2.Remove(low1.Key);
Side1.Add(low1.Key, low1.Value);
totaltime += low1.Value;
i++;
}
} while (Side1.Count > 2);
KeyValuePair<string, int> low3, low4;
LowestTwo(Side1, out low3, out low4);
Console.WriteLine("{0} and {1} goes from side 1 to side 2, time taken = {2}", low3.Key, low4.Key, low4.Value);
Side2.Add(low4.Key, low4.Value);
Side2.Add(low3.Key, low3.Value);
totaltime += low4.Value;
Console.WriteLine("\n");
Console.WriteLine("Total Time taken = {0}", totaltime);
}
public static void LowestTwo(Dictionary<string, int> a, out KeyValuePair<string, int> low1, out KeyValuePair<string, int> low2)
{
Dictionary<string, int> b = a;
low1 = b.OrderBy(kvp => kvp.Value).First();
b.Remove(low1.Key);
low2 = b.OrderBy(kvp => kvp.Value).First();
}
public static void HighestTwo(Dictionary<string,int> a, out KeyValuePair<string,int> high1, out KeyValuePair<string,int> high2)
{
Dictionary<string, int> b = a;
high1 = b.OrderByDescending(k => k.Value).First();
b.Remove(high1.Key);
high2 = b.OrderByDescending(k => k.Value).First();
}
public static KeyValuePair<string, int> LowestOne(Dictionary<string,int> a)
{
Dictionary<string, int> b = a;
return b.OrderBy(k => k.Value).First();
}
}
}
Sample output for a random input provided which is 7 in this case, and 2 persons to cross at a time will be:
Enter number of persons
7
Enter the name and time taken by each
A
2
B
5
C
3
D
7
E
9
F
4
G
6
Shortest time and logic:
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
E and D goes from side 1 to side 2, time taken = 9
C comes back to side 1, time taken = 3
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
G and B goes from side 1 to side 2, time taken = 6
C comes back to side 1, time taken = 3
A and C goes from side 1 to side 2, time taken = 3
A comes back to side 1, time taken = 2
A and F goes from side 1 to side 2, time taken = 4
Total Time taken = 40