I have the following EBNF grammar for simple arithmetic expressions with left-associative operators:
expression:
term {+ term}
term:
factor {* factor}
factor:
number
( expression )
How can I convert this into a BNF grammar without changing the operator associativity? The following BNF grammar does not work for me, because now the operators have become right-associative:
expression:
term
term + expression
term:
factor
factor * term
factor:
number
( expression )
Wikipedia says:
Several solutions are:
- rewrite the grammar to be left recursive, or
- rewrite the grammar with more nonterminals to force the correct precedence/associativity, or
- if using YACC or Bison, there are operator declarations, %left, %right and %nonassoc, which tell the parser generator which associativity to force.
But it does not say how to rewrite the grammar, and I don't use any parsing tools like YACC or Bison, just simple recursive descent. Is what I'm asking for even possible?